The software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement.

Copyright Notice
© 2017 Moxa Inc. All rights reserved.

Trademarks
The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer
Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa.

Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

www.moxa.com/support

Moxa Americas
Toll-free: 1-888-669-2872
Tel: +1-714-528-6777
Fax: +1-714-528-6778

Moxa Europe
Tel: +49-89-3 70 03 99-0
Fax: +49-89-3 70 03 99-99

Moxa India
Tel: +91-80-4172-9088
Fax: +91-80-4132-1045

Moxa China (Shanghai office)
Toll-free: 800-820-5036
Tel: +86-21-5258-9955
Fax: +86-21-5258-5505

Moxa Asia-Pacific
Tel: +886-2-8919-1230
Fax: +886-2-8919-1231
Table of Contents

1. **Introduction** ... 1-1
 - Overview .. 1-2
 - Package Checklist ... 1-2
 - Product Specifications .. 1-3

2. **Hardware Installation** ... 2-1
 - Hardware Installation .. 2-2
 - Block Diagrams ... 2-2
 - I/O Base Address (For CA Series) .. 2-4
 - Rotary Switch (For CB Series) ... 2-5
 - Interrupt Vector for CA Series ... 2-5
 - Serial Interface ... 2-6

3. **Software Installation** .. 3-1
 - Windows OS .. 3-2
 - Older OS for CA Series .. 3-2
 - Older OS for CB Series .. 3-20
 - Newer OS for Both CA/CB Series ... 3-43
 - Non-Windows OS .. 3-59

4. **Serial Programming Tools** ... 4-1
 - Serial Programming Library .. 4-2
 - PComm Utilities .. 4-2
 - Installation ... 4-2
 - PComm Diagnostic .. 4-2
 - PComm Monitor ... 4-3
 - PComm Terminal Emulator ... 4-3

5. **Smartio/Industio Programming Guide** .. 5-1
 - Relative Product List ... 5-2
 - Resource Requirement for Moxa Board ... 5-2
 - PCI Configuration for Moxa Board ... 5-2
 - UART Register Structure for MUE250, MUE450, and MUE850 chips .. 5-3
 - For Baud Rate Setting .. 5-4
 - Moxa Board PCI Device ID List .. 5-5
 - UART Datasheet .. 5-6

6. **Pin Assignments** .. 6-1
 - Box Header Pin Assignments .. 6-1
 - RS-232 .. 6-1
 - RS-422, 4-wire RS-485 .. 6-1
 - 2-wire RS-485 .. 6-2

2-wire RS-485 .. 6-2
RS-422, 4-wire RS-485 .. 6-1
2-wire RS-485 .. 6-2

Welcome to the CA and CB Series of PC/104 communication modules, a multiport serial module for industrial applications. It is designed for the PC/104 CPU and PC/104-Plus boards that respectively accept the PC/104 and PC/104-Plus expansion interface. Optional DB9 and DB25 cables are available to connect different devices.

The CA Series includes the following models:

- **CA-108**: 8 ports, RS-232
- **CA-108-T**: 8 ports, RS-232, wide temperature
- **CA-114**: 4 ports, RS-232/422/485
- **CA-114-T**: 4 ports, RS-232/422/485, wide temperature
- **CA-134I**: 4 ports, RS-422/485, optical isolation protection
- **CA-134I-T**: 4 ports, RS-422/485, optical isolation protection, wide temperature
- **CA-104**: 4 ports, RS-232
- **CA-104-T**: 4 ports, RS-232, wide temperature
- **CA-132**: 2 ports, RS-422/485
- **CA-132-T**: 2 ports, RS-422/485, wide temperature
- **CA-132I**: 2 ports, RS-422/485, optical isolation protection
- **CA-132I-T**: 2 ports, RS-422/485, optical isolation protection, wide temperature

The CB Series includes the following models:

- **CB-108**: 8 ports, RS-232
- **CB-108-T**: 8 ports, RS-232, wide temperature
- **CB-114**: 4 ports, RS-232/422/485
- **CB-114-T**: 4 ports, RS-232/422/485, wide temperature
- **CB-134I**: 4 ports, RS-422/485, optical isolation protection
- **CB-134I-T**: 4 ports, RS-422/485, optical isolation protection, wide temperature

2 kV optical isolation is provided on optical isolation models. Wide-temperature models are rated for operation between -40 to 85°C.

The following topics are covered in this chapter:

- **Overview**
- **Package Checklist**
- **Product Specifications**
Overview

The PC/104 standard serial boards are very popular for embedded applications. Moxa offers a wide selection of PC/104 and PC/104-Plus serial boards to provide industrial-grade connections to multiple serial devices.

Use Moxa's serial boards so that your PC/104-based systems can establish serial device connections with high data throughput over multiple serial interfaces. The CA serial board series is for PC/104 modules, while the CB serial board series is for PC/104-Plus modules.

Package Checklist

MOXA performs a careful mechanical and electrical inspection of each module prior to shipping. Your module should arrive in perfect electrical order, free of any marks or scratches. Please handle the module by the edges only, since your body’s static charge can damage the integrated circuits. When the module is not in use, please keep it in the anti-static package provided. You may also use this package to return the module if it requires repair.

The CA/CB Series module is shipped with the following items:

- Multiport serial module (PC/104 is for CA Series; PC/104-Plus is for CB Series)
- Documentation and software CD
- Quick installation guide
- 5-year product warranty statement

NOTE Please notify your sales representative if any of the above items are missing or damaged.

The CA Series module features the following:

- Two, four, or eight serial ports (depending on the model)
- RS-232, RS-422, or RS-485 operation (depending on the model)
- 64-byte FIFOs and on-chip flow control
- Up to 921.6Kbps data transmission speed
- Built-in 15 KV ESD protection
- Configurable IRQ and I/O settings
- Onboard Tx, Rx LED indicators for each port
- Optional wide temperature support (-40 to 85°C)

The CB Series module features the following:

- Four or eight serial ports (depending on the model)
- RS-232, RS-422, or RS-485 operation (depending on the model)
- 128-byte FIFOs and on-chip flow control
- Up to 921.6Kbps data transmission speed
- Built-in 15 KV ESD protection
- Onboard Tx, Rx LED indicators for each port
- Optional wide temperature support (-40 to 85°C)
Product Specifications

CA Series PC/104 Multiport Serial Module

Hardware
I/O controller 16C550C or compatible
Connector Type 40-pin box header (CA-108, CA-114, CA-134I, CA-104)
 20-pin box header (CA-132, CA-132I)

Interface
Bus PC/104 bus (Ver. 2.4)
No. of Ports 2 ports (CA-132, CA-132I)
 4 ports (CA-114, CA-134I, CA-104)
 8 ports (CA-108)
Max. No. of Modules 8

Signals
RS-232 TxD, RxD, RTS, CTS, DTR, DSR, DCD, GND
RS-422 TxD+(B), TxD-(A), RxD+(B), RxD-(A), GND
4-wire RS-485 TxD+(B), TxD-(A), RxD+(B), RxD-(A), GND
2-wire RS-485 Data+(B), Data-(A), GND

Performance
Baudrate 50 bps to 921.6 Kbps (supports nonstandard baud rates)

Configuration
Parity None, Even, Odd, Space, Mark
Data Bits 5, 6, 7, 8
Stop Bit(s) 1, 1.5, 2
IRQ Shared IRQ for all ports
 (includes IRQ 3, 4, 5, 6, 7, 9, 10, 11, 12, 15)
FIFO 64 bytes
Additional Settings I/O base address, interrupt vector, serial interface (all by DIP switch)
Driver Support
 DOS
 Windows 2000/XP/2003/Vista/2008/7/8/8.1/10 (x86/x64), Windows
 Server 2008 R2/2012/2012 R2/2016 (x64)
 Linux 2.4, Linux 2.6

Power and Environment
Operating Temperature Standard models: 0 to 55°C (32 to 131°F)
 "-T" models: -40 to 85°C (-40 to 185°F)
Operating Humidity 5 to 95% RH
Storage Temperature -40 to 70°C (-40 to 158°F)
ESD Protection Embedded 15 KV ESD protection

Other
Dimensions (W x D) 96 x 90 mm
Regulatory Approvals EN55022 Class A, EN55024, EN61000-3-2, EN61000-3-3, FCC Part 15
 Class A
Warranty 5 years
CB Series PC/104-Plus Multiport Serial Module

Hardware
- **I/O controller**: MU860 (16C550C compatible)
- **Connector Type**: 40-pin box header

Interface
- **Bus**: PC/104-Plus (PCI) bus
- **No. of Ports**: 4 ports (CB-114, CB-134I), 8 ports (CB-108)
- **Max. No. of Modules**: 8

Signals
- **RS-232**: TxD, RxD, RTS, CTS, DTR, DSR, DCD, GND
- **RS-422**: TxD+(B), TxD-(A), RxD+(B), RxD-(A), GND
- **4-wire RS-485**: TxD+(B), TxD-(A), RxD+(B), RxD-(A), GND
- **2-wire RS-485**: Data+(B), Data-(A), GND

Performance
- **Baudrate**: 50 bps to 921.6 Kbps (supports nonstandard baud rates)

Configuration
- **Parity**: None, Even, Odd, Space, Mark
- **Data Bits**: 5, 6, 7, 8
- **Stop Bit(s)**: 1, 1.5, 2
- **IRQ**: BIOS assigned
- **FIFO**: 128 bytes
- **Additional Settings**: Serial interface selection by DIP switch
- **Driver Support**: DOS, Windows 2000/XP/2003/Vista/2008/7/8/8.1/10 (x86/x64), Windows Server 2008 R2/2012/2012 R2/2016 (x64), Linux 2.4, Linux 2.6 (x86 and x64)

Power and Environment
- **Operating Temperature**: Standard models: 0 to 55°C (32 to 131°F), “-T” models: -40 to 85°C (-40 to 185°F)
- **Operating Humidity**: 5 to 95% RH
- **Storage Temperature**: -40 to 70°C (-40 to 158°F)
- **ESD Protection**: Embedded 15 KV ESD protection

Other
- **Dimensions (W x D)**: 96 x 90 mm
- **Regulatory Approvals**: EN55022 Class A, EN55024, EN61000-3-2, EN61000-3-3, FCC Part 15 Class A

Warranty
- **5 years**
This chapter explains how to install the CA/CB Series multiport serial module.

The following topics are covered in this chapter:

- **Hardware Installation**
- **Block Diagrams**
 - I/O Base Address (For CA Series)
 - Rotary Switch (For CB Series)
 - Termination Resistor
 - Interrupt Vector for CA Series
- **Serial Interface**
Hardware Installation

Installing the CA/CB Series module is easy. For the CA Series, before inserting the module into the PC/104 slot, you must first configure the I/O base address, interrupt vector, IRQ, and serial interface (for select models).

ATTENTION
Safety First!
To prevent damage to your system or board, make sure your embedded PC’s power is turned off before installing your CA/CB Series module.

<table>
<thead>
<tr>
<th>CA Series</th>
<th>CB Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Shut off power to your embedded PC and to any peripheral devices. After shutting off power, remove the cover of your embedded PC.</td>
<td>Step 1: Shut off power to your embedded PC and to any peripheral devices. After shutting off power, remove the cover of your embedded PC.</td>
</tr>
<tr>
<td>Step 2: Use the DIP switches on the module to select the I/O base address, interrupt vector, IRQ, and serial interface (for select models). Details for each model are provided later in this chapter.</td>
<td>Step 2: Use the DIP switches on the module to select the serial interface. Details for each model are provided later in this chapter.</td>
</tr>
<tr>
<td>Step 3: Insert the module firmly into the embedded PC’s PC/104 slot.</td>
<td>Step 3: Insert the module firmly into the embedded PC’s PC/104-Plus slot.</td>
</tr>
<tr>
<td>Step 4: Screw the control board in place</td>
<td>Step 4: Screw the control board in place.</td>
</tr>
<tr>
<td>Step 5: Connect the cables.</td>
<td>Step 5: Connect the cables.</td>
</tr>
<tr>
<td>Step 6: Power on the embedded PC.</td>
<td>Step 6: Power on the embedded PC. The BIOS will automatically set the IRQ and I/O address.</td>
</tr>
<tr>
<td>Step 7: Proceed with the software installation. Please refer to Chapter 3.</td>
<td></td>
</tr>
</tbody>
</table>
I/O Base Address (For CA Series)

Use DIP switch SW1 to set port 1’s I/O base address. The other ports will be configured automatically. The default I/O base address is 0x180 and allows settings from 0x000 to 0x3FF. Some popular settings are provided below:

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0x000</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>0x200</td>
</tr>
</tbody>
</table>
CA Series PC/104 Hardware Installation

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>off</td>
<td>off</td>
<td>0×300</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>0×380</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>0×3C0</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>0×3E0</td>
</tr>
<tr>
<td>ON</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>0×3F0</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>0×3F8</td>
</tr>
<tr>
<td>off</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>0×008</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>0×018</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>0×038</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>0×078</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>ON</td>
<td>ON</td>
<td>0×0F8</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>ON</td>
<td>off</td>
<td>0×2F8</td>
</tr>
</tbody>
</table>

For example, an I/O base address of 0×180 should be set as follows:

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>off</td>
<td>ON</td>
<td>0×180</td>
</tr>
</tbody>
</table>

= on, = off

The other serial ports will be set automatically to 0×188, 0×190, 0×198, etc.

Rotary Switch (For CB Series)

A rotary switch on the board makes it easy to set the appropriate signals, particularly when installing multiple PC/104-Plus modules in the same unit. The rotary switch, which looks like a clock, provides a bidirectional path with no signal propagation delay. The first module on the stack should be set to CLK0, the second to CLK1, etc., to eliminate clock skew between modules.

Termination Resistor

Onboard termination resistors can be activated individually for each serial port using jumpers. With regard to the CA Series: for CA-114 and CA-134I, use JP1 through JP4; for CA-132 and CA-132I, use JP1 and JP2. JP1 corresponds to serial port 1. For the CB Series, use jumpers JP1 through JP4. JP1 corresponds to serial port 1. Short the jumper pins to activate the termination resistor; leave the jumper pins open to bypass the termination resistor.

Interrupt Vector for CA Series

Use DIP switch SW2 to set port 1’s interrupt vector. The default interrupt vector is 0×1C0, with SW2 set as follows:

<table>
<thead>
<tr>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>ON</td>
<td>0×1C0</td>
</tr>
</tbody>
</table>
Serial Interface

CA Series

For the CA-114, use SW3, SW4, and SW5 to select the serial interface as follows:

<table>
<thead>
<tr>
<th>Interface</th>
<th>RS-232</th>
<th>RS-422</th>
<th>4w RS-485</th>
<th>2w RS-485</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW3</td>
<td>-</td>
<td>-</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>SW4</td>
<td>-</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>SW5</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

For the CA-134I, CA-132 , and CA-132I , use the 2-WIRE/4-WIRE and RS-422/RS-485 DIP switches to select the serial interface as follows:

<table>
<thead>
<tr>
<th>Interface</th>
<th>2-WIRE/4-WIRE</th>
<th>RS-422/RS-485</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-422</td>
<td>-</td>
<td>OFF</td>
</tr>
<tr>
<td>4-wire RS-485</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>2-wire RS-485</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

CB Series

For the CB-114 and CB-134I, use the DIP switch to select serial interface.

CB-114

<table>
<thead>
<tr>
<th>Mode</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232</td>
<td>-</td>
<td>-</td>
<td>ON</td>
</tr>
<tr>
<td>RS-422</td>
<td>-</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>4-wire RS-485</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>2-wire RS-485</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

CB-134I

<table>
<thead>
<tr>
<th>Mode</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-422</td>
<td>-</td>
<td>OFF</td>
</tr>
<tr>
<td>4-wire RS-485</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>2-wire RS-485</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>
IRQ for CA Series

Before selecting an IRQ, please enter the PC's BIOS and reserve a dedicated IRQ for the module. On the module, the IRQ is set by a jumper. Before inserting the module into the PC/104 slot, use the jumper to select an IRQ (3, 4, 5, 6, 7, 9, 10, 11, 12, or 15).
After installing the CA/CB Series module in your embedded computer, the next step is installing the software. Drivers for various operating systems are provided, including DOS, Windows, and Linux. This chapter explains how to install and remove the CA/CB Series driver.

The following topics are covered in this chapter:

- **Windows OS**
 - Older OS for CA Series
 - Older OS for CB Series
 - Newer OS for Both CA/CB Series
- **Non-Windows OS**
Windows OS

Older OS for CA Series

DOS

Moxa DOS API-232 is a software package that can help you develop or debug serial communications programs. This section will explain how to install the package, set up the driver, and load or unload the driver. For additional information about the API-232 library and utilities, please refer to Chapter 4.

The DOS drivers support the CA-104, CA-104-T, CA-132, CA-132-T, CA-132I, and CA-132I-T. The CA-108, CA-114, and CA-134I models are not supported under DOS.

In the following instructions, the CA-104 is used as an example.

Installing the Driver

Run the installation program, `DOSINST.EXE`, in the DOS folder. Specify the target directory for the API-232 files (e.g., `C:\MOXA`). Press F2 to start the installation.

When the installation is completed, you will be prompted to set up the board and driver initial values. We strongly recommend that you do so.
Driver Setup

The following instructions are not intended to illustrate every function of the setup program. For more detailed information, please refer to the help files by pressing F1 in the setup program.

1. Run the setup program BIN\SETUP.EXE.
2. Select your CA Series model and press Enter.

3. You must set the Port No., I/O Address, IRQ, and INT Vector properly. These settings must match your module’s hardware configuration.

4. Press PgDn to view advanced the port setup options. Your module’s configuration will be displayed along with other settings, such as port number, buffer size, etc.
5. Verify the settings and make any necessary changes.

Port number: This is the port ID of each port. Application software will refer to a port by its port number (ID). Port numbers must be unique; duplicated port numbers are not allowed. The port ID can range from 0 to 127 as long as it does not overlap with another port. Generally, you should consider the convenience of programming when specifying the port number.

TxD buffer size: This is the transmission (output) buffer allocated in the system for each port.

RxD buffer size: This is the receiving (input) buffer allocated in the system for each port.

F5: Group Edit: This allows you to configure several ports simultaneously as a group.

6. Press F10 to save the latest configuration and exit the setup program.
Loading the Driver

After setting up the driver, you must load the driver in order to gain access to the serial ports on the module. Run `BIN\DPC-DRV.EXE` at the DOS prompt. The driver will detect your CA Series module automatically. You should see messages indicating successful detection of your module, such as the following:

PC/104 Communication Module DOS driver Version 1.0
Setup driver ...
CA-104 series OK!
Device driver setup O.K.

At this point, you can execute applications that support API-232 functions, or start developing applications using the API-232 library.

Unloading the Driver

To unload or release the CA Series driver from memory, enter `DPC-DRV/Q` at the DOS prompt.

Windows NT

The Windows NT drivers conform to the Win32 COMM API standard and support the CA-104, CA-104-T, CA-132, CA-132-T, CA-132I, CA-132I-T. CA-108, CA-114, and CA-134I.

In the following instructions, the CA-104 is used as an example.

Installing the Driver

1. Right-click `Network Neighborhood` and select `Properties` in the context menu.

2. Under the `Adapters` tab, click `Add...`
3. When prompted to select a network adapter, click **Have Disk**.

4. At the prompt, insert the installation disk provided with your module.

For the location, enter **A:\windows.nt**. Click **OK** to continue.

5. Windows will install the drivers.
6. After the files have been installed, a configuration panel will open. Click **Add** to continue.

![Configuration Panel]

7. Under **Board Type**, select your CA Series model. The window will show the COM port numbers that will be assigned to the CA Series serial ports, as well as other settings. Click **OK** to continue.

![Property Window]
8. The CA Series module will appear as a network adapter. Click **OK** to complete installation of the module.

Uninstalling the Module

1. Right-click **Network Neighborhood** and select **Properties** in the context menu.
2. Under the **Adapters** tab, select your CA Series module and click **Remove**.

3. A confirmation dialog will appear. Click **OK** to uninstall the device.

Windows 95, 98, ME

The Windows 95/98/ME drivers conform to the Win32 COMM API standard and support the CA-104, CA-104-T, CA-132, CA-132-T, CA-132I, CA-132I-T, CA-108, CA-114, and CA-134I. In the following instructions, the CA-104 is used as an example.

Installing the Driver

1. Insert the CA Series installation disk and run **Setup95.exe** through **Start menu → Run**.
2. Click **Next** to proceed through the Welcome screens.

3. Windows will install the drivers. When the installation has been completed, click **Finish**.
4. After the files have been installed, a configuration panel will open. Click Add to continue.

5. Under Board Type, select your CA Series model. The window will show the COM port numbers that will be assigned to the CA Series serial ports, as well as other settings. Click OK to continue.
6. The CA Series module will now appear in the configuration panel. Click OK to complete installation of the module.

Open the configuration panel again through Start → Programs → Moxa Utilities → MOXA PC104 Communication Module Configuration Panel.

Uninstalling the Module

Open the configuration panel through Start>Programs>Moxa Utilities>Moxa PC104 Communication Module Configuration Panel. Select your CA Series module and click Remove

2. A confirmation dialog will appear. Click Yes to uninstall the device.
3. To remove the driver from the system, open Add/Remove Programs in the Control Panel.

4. Under the Install/Uninstall tab, select MOXA PC104 Communication Module Driver and click Add/Remove.
5. A confirmation dialog will appear. Click **Yes** to remove the driver.

![Confirmation Dialog]

Yes No

6. After the driver has been removed, click **OK** to close the window.

![Confirmation Dialog]

Remove Moxa PC104 Communication Module Driver complete !

Windows CE 5.0

In this section, we explain how to install Moxa CA series boards under WinCE 5.0. These instructions are intended for users who are familiar with the Windows CE Platform Builder 5.0 ToolKit, and who would like to install one or more Moxa Tech products. Here, we only give the step-by-step installation instructions for the development environment. You will need to download the image file to the target host yourself.

The WinCE 5.0 driver for the Moxa CA Series PC/104 Multiport Serial Module supports the following products: CA Series: CA-108, CA-114, CA-134I, CA-104, CA-132, and CA-132I.

In the following steps, we are using CA-104 as an example.

Installing the driver

The following procedure explains how to install the CA-104 multiport serial module driver under WinCE.

1. Obtain a copy of the Moxa Tech WinCE 5.0 driver package and extract it to your computer. Double-click the **Installation** icon to copy the Mxpcdrv folder to `%WINCEROOT%\PLATFORM\` automatically, and import the supported Moxa Tech products into the **Folder**.

2. Start WinCE Platform Builder, and then select **File → New Platform**.
3. Enter a workspace name and then press **Next**.

4. When you see Board Support Packages, Design Template, Applications & Media, Networking & Communications, OBEX Server, select what you need to build your own environment. The **Completing the New Platform Wizard** window will open to indicate that it has created a new platform. Click **Finish** to complete the setup.
CA Series PC/104 Software Installation

New Platform Wizard - Step 5

Applications & Media
Select items for applications and media to include in your OS design.

Items:
- [] .NET Compact Framework
- [] ActiveSync
- [] DCOM
- [] Lightweight Directory Access Protocol (LDAP)
- [] Standard SDK for Windows CE
- [] VBScript support
- [] Windows Media Audio/MP3
- [] Windows Media Video/MPEG-4 Video
- [] Windows Messenger
- [] WordPad
- [] Internet Browser
- [] Microsoft File Viewers
- [] Windows CE Error Reporting

Support for applications and services designed for the .NET Compact Framework.

Estimated size of these items: 10063 KB

New Platform Wizard - Step 6

Networking & Communications
Select items for networking and communications to include in your OS design.

Items:
- [] OBEX Server
- [] TCP/IPv6 Support
- [] Local Area Network (LAN)
- [] Personal Area Network (PAN)
- [] Remote Desktop Connection
- [] Wide Area Network (WAN)

The foundation of the OBEX Application Framework that provides support for both standard and user-defined services.

Estimated size of these items: 10924 KB
5. Select File → Manage Catalog Items In View → Catalog, and browse \Third Party\Device Drivers\ MOXA Smartio/Industio-PC/104. Right-click on the driver Prefix COM or Prefix MXU you would like to include and choose Add to OS Design.

NOTE

You can only select either Prefix COM or Prefix MXU, but not both.

Prefix COM supports up to 10 ports, from COM0 to COM9. Prefix MXU supports more than 10 ports, so it is better for you to select Prefix MXU if you are not sure how many ports the device has. Otherwise, you will only
be allowed to use one multiport serial board on the target host.

6. After adding Moxa Tech drivers into your OS Design, a new project is automatically added to your workspace. The project name is mxpcdrvce5.reg. The project can be accessed from View → File View. The mxpcdrvce5.reg project contains a number of files used to configure the drivers included in your OS Design. For ISA boards, remember to set the IRQ and I/O address in mxpcdrvce5.reg. For example, if your IRQ is 10, IOBASE is 0180, Interrupt and Vector is 01c0, then you should configure “1A” for SysIntr, “0180” and “01c0” for IOBASE, “A” for IRQ, and “1” for FIFO. When applying the formula “IRQ+10”, remember that IRQ is in base 10, and 10 is in Hex format. If we first convert the IRQ value to Hex format, then SysIntr will equal 1A. Otherwise, set FIFO to 1 to enable the FIFO.

NOTE To use the “Terminal Emulator” tool, modify mxpcdrvce5.reg and keyboard as shown below (this is just for "one" "COM" port). Take note of the number of ports, COM, and MXU, and then enter the correct information.

```
[HKEY_LOCAL_MACHINE\ExtModems\HayesCompat1]
"Port"="COM2:"
"DeviceType"=dword:1
"FriendlyName"="Hayes Compatible on COM2:"
```
7. Finally, open Build OS, select Build and Sysgen, and be sure to click **Copy Files to Release Directory After Build** and **Make Run-Time Image After Build**.

8. Finally, copy your image file to the target host.

NOTE If you created a Windows CE Platform Builder in the development environment, skip steps 2, 3, and 4.
Older OS for CB Series

DOS

Moxa DOS API-232 is a software package that can help you develop or debug serial communications programs. This section will explain how to install the package, set up the driver, and load or unload the driver. For additional information about the API-232 library and utilities, please refer to Chapter 4.

The DOS drivers support all models in the CB Series.

In the following instructions, the CB-104 is used as an example.

Installing the Driver

Run the installation program, **DOSINST.EXE**, in the DOS folder. Specify the target directory for the API-232 files (e.g., **C:\MOXA**). Press F2 to start the installation.

After the installation has been completed, you will be prompted to set up the board and driver initial values. We strongly recommend that you do so.
Driver Setup

The following instructions are not intended to illustrate every function of the setup program. For more detailed information, please refer to the help files by pressing F1 in the setup program.

1. Run the setup program BIN\SETUP.EXE.
2. Select your CB Series model and press Enter.
3. A window will open, displaying all configuration information for all installed modules. Press PgDn to view advanced port setup options and to make configuration changes. Your module’s configuration will be displayed along with other settings such as port number, buffer size, etc.
4. Verify the settings and make any necessary changes.

![Port Setup Window](image)

Port number: This is the port ID of each port. Application software will refer to a port by its port number (ID). Port numbers must be unique; duplicate port numbers are not allowed. The port ID can range from 0 to 127 as long as it does not overlap with another port. Generally, you should consider the convenience of programming when specifying the port number.

TxD buffer size: This is the transmission (output) buffer allocated in the system for each port.

RxD buffer size: This is the receiving (input) buffer allocated in the system for each port.

F5: Group Edit: This allows you to configure several ports simultaneously as a group.
5. Press **F10** to save the latest configuration and exit the setup program.

Loading the Driver

After setting up the driver, you must load the driver in order to gain access to the serial ports on the module. Run **BIN\DPC-DRV.EXE** at the DOS prompt. The driver will detect your CB Series module automatically. You should see messages indicating successful detection of your module, such as the following:
Smartio/Industio Family DOS driver Version 1.8
Setup driver ...
CB-114 series (Bus=x, Dev=y): OK!
Device driver setup O.K.
At this point, you can execute applications that support API-232 functions, or start developing applications using the API-232 library.

Unloading the Driver

To unload or release the CB Series driver from memory, enter **DPC-DRV/Q** at the DOS prompt.
Windows NT

Installing the Driver

You will need to plug the board in an available PCI or PCI-X slot first, before installing the driver. Note that these instructions use the CB-114 as an example. The procedure for installing all models is the same.

1. Log into Windows NT as Administrator.
2. Locate the appropriate folder for your board’s drivers on the Document & Software CD. The NT drivers will be located under the product folder in the \Software\WinNT directory (e.g., under \CB-114 Series\Software). Copy this folder to the PC’s hard disk and remember its location.
3. In the Control Panel, open Network applet. On the Adapters tab, click Add. When prompted to select a product, click Have Disk....

You will be prompted to enter the path to the driver. Enter the location of the drivers that you copied from the Document & Software CD (C:\Windows.nt in this example) and then click OK.

4. When prompted, select your board model (Smartio/Industio Family multiport board in this example) and click OK.
5. After the files have been installed, a configuration panel will open. This is where boards are installed, configured, and removed. If another board has already been installed on the system, it will already be listed. Windows NT does not automatically detect Moxa UPCI boards, so you will need to click Add for a newly installed board.

6. Under Board Type, select the UPCI board that is being installed. The window will show the COM settings for the serial ports on the board. You can modify the COM settings for any port at this time by selecting a port and clicking Port Setting. If you are satisfied with the COM settings, click OK to return to the configuration panel.
7. The board will now appear in the configuration panel (**CB-114 Series in this example**). Click OK to return to the Network applet. After that, click OK again to exit the Network applet.

8. Restart the PC. After you have logged back into Windows NT, you may check the event log issued by the Moxa driver to see if the board’s ports have been initialized successfully. In the **Administrative** group, open **Event Viewer** and select **Log and System**. For each newly installed or configured Moxa UPCI board, check for a message stating that the board has been enabled (e.g., "MoxaCB-114 board, with first serial port COM3, has been enabled").

Configuring the Ports

1. In Windows **Control Panel**, open the **Network** applet. In the **Adapters** tab, UPCI boards will appear as a type of Moxa adapter (**MOXA Smartio/Industio Family Adapter** in this example). Select the Moxa adapter and click **Properties**...
2. The configuration panel will open with a list of installed boards. Select your board and click **Property**. Up to four Moxa UPCI boards can be installed at a time.

![Configuration Panel](image1)

3. Select a port to configure and click **Port Setting**.

![Property Panel](image2)
Under **Port Number**, select a COM number to assign to the serial port. Select **Auto Enumerating COM Number** to map subsequent ports in numerical order. For example, if COM 3 is assigned to Port 1, then COM 4 will be automatically assigned to Port 2.

4. Select an **Rx FIFO Trigger** and **Tx FIFO Size**. The default Rx FIFO Trigger is 120 bytes (high level). The default Tx FIFO Size is 128 bytes (high level). Select **Set the change to all ports** to use this setting for all serial ports on the board.

<table>
<thead>
<tr>
<th></th>
<th>Tx FIFO</th>
<th>Rx FIFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>128</td>
<td>120</td>
</tr>
<tr>
<td>Middle</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>Low</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

5. Click **OK** to approve the settings for the selected port. Continue in the same way to configure the other ports. When you have finished setting up the ports, click **OK** to close the Properties window and apply the new port settings. Click **OK** again to exit the Network applet.

Removing the Board

To remove a board, shut off your PC and physically remove the board from the PCI slot. The next time you start up the PC, Windows NT will automatically remove the configuration. You do not need to go through the Windows control panel.
Updating the Driver

1. In Windows Control Panel, open the Network applet. Under the Adapters tab, UPCI boards will appear as a type of Moxa adapter (MOXA Smartio/Industio Family Adapter in this example). Select the Moxa adapter and click Remove.

2. Restart the system.

3. Go through the process of installing the drivers, using the new drivers.

Removing the Driver

1. In the Windows Control Panel, open the Network applet. Under the Adapters tab, UPCI boards will appear as a type of Moxa adapter (MOXA Smartio/Industio Family Adapter in this example). Select the Moxa adapter and click Remove.

2. Click OK to exit the Network applet and restart the system.
Windows 95/98/ME

Installing the Driver

Windows 95
1. After the board is physically installed and the PC boots up, Windows will automatically detect the new board and the Found New Hardware Wizard window will open. Click Next to continue.

2. Select Other Locations...

3. Click Browse and select the appropriate directory on the Document & Software CD for the driver. Drivers for all operating systems are located under the product folder in the \Software directory. Select the \Win9x folder and click OK to continue.
4. After Windows finds the drivers, click **Finish**.

You can configure and use the new COM ports right away without restarting Windows.

Windows 98 and ME

1. After the board is physically installed and the PC boots up, Windows will automatically detect the new board and the **Found New Hardware Wizard** window will open. Click **Next** to continue.
2. Select **Display a list...** and click **Next**.

3. Select **Other Devices** and click **Next**.

4. Select **Have Disk...**

5. Click **Browse** and select the appropriate directory on the Document & Software CD for the driver. Drivers for all operating systems are located under the product folder in the \Software directory. Select the \Win9x folder and click **OK** to continue.
6. After Windows has installed the drivers, click Finish.

Configuring the Ports

Configure the COM ports after the board and drivers have been installed.
1. In the Windows Control Panel, open the System applet.
2. In the **Device Manager** tab, expand the **Moxa Smartio/Industio multiport board** category by clicking the “+” sign next to it. Select the desired board and click **Properties**.

![Device Manager](image1)

3. Under the **Ports Configuration** tab, select a port to configure and click **Port Setting**.

![Ports Configuration](image2)
Under **Port Number**, select a COM number to assign to the serial port. Select **Auto Enumerating COM Number** to map subsequent ports in numerical order. For example, if COM 3 is assigned to Port 1, then COM 4 will be automatically assigned to Port 2.

4. Select an **Rx FIFO Trigger** and **Tx FIFO Size**. The default Rx FIFO Trigger is 120 bytes (high level). The default Tx FIFO Size is 128 bytes (high level). Select **Set the change to all ports** to use this setting for all serial ports on the board.

<table>
<thead>
<tr>
<th></th>
<th>TxFIFO</th>
<th>RxFIFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>128</td>
<td>120</td>
</tr>
<tr>
<td>Middle</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>Low</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

5. Click **OK** to approve the settings for the selected port. Continue in the same way to configure the other ports. When you have finished setting up the ports, click **OK** to close the **Properties** window and apply the new port settings. Click **OK** again to close the **Device Manager** and restart the system.

Updating the Driver

You may configure the COM ports after the board and drivers have been installed.

1. In the Windows **Control Panel**, open the **System** applet.
2. Under the **Device Manager** tab, expand the **Moxa Smartio/Industio multiport board** category by clicking the “+” sign next to it. Select the desired board and click **Properties**.

3. In the **Driver** tab, click **Update Driver**....
4. Select the appropriate model (CP-168U in this example) and click **Have Disk**.

5. When prompted, select the appropriate directory on the Document & Software CD for the driver. Drivers for all operating systems are located under the product folder in the `\Software` directory. Select the `\Win9x` folder and click **OK** to continue.

6. You will be prompted to restart the system. The new drivers will be in effect the next time you restart.

Removing the Driver

1. In the Windows Control Panel, open the **Add/Remove Programs** applet. On the Install/Uninstall tab, select **MOXA Smartio/Industio Driver** and click **Add/Remove**.

2. When prompted, click **Yes** to confirm that you want to remove the driver.
3. After the driver has been removed, click OK to return to the Add/Remove Programs applet.

Windows CE 5.0

In this section, we explain how to install Moxa CB series boards under WinCE 5.0. These instructions are intended for users who are familiar with the Windows CE Platform Builder 5.0 Toolkit, and would like to install one or more Moxa Tech products. Here, we only give the step-by-step installation instructions for the development environment. You will need to download the image file to the target host yourself.

The WinCE 5.0 driver for the Moxa CB Series PC/104-Plus Multiport Serial Module supports the following products:
CB Series: CB-108, CB-114, CB-134I
The CB-114 board is used to illustrate the installation procedure.

Installing the driver

The following procedure explains how to install the CB-114 multiport serial module driver under WinCE.

1. Obtain a copy of Moxa Tech WinCE 5.0 driver package and extract it to your computer. Double-click the Install package to copy the Mxser folder to %WINCEROOT%\PLATFORM\ automatically, and import the supported MOXA Tech products into the Folder.
3. Enter a name for Workspace and press **Next**.

4. When you see **Board Support Packages, Design Template, Applications & Media, Networking & Communications, OBEX Server**, select what you need to build your own environment. The **Completing the New Platform Wizard** window will open to indicate that it has finished creating a new platform. Click **Finish** to complete the setup.
CA Series PC/104 Software Installation

New Platform Wizard - Step 5

Applications & Media
Select items for applications and media to include in your OS design.

Items:
- [] .NET Compact Framework
- [] ActiveSync
- [] DCOM
- [] Lightweight Directory Access Protocol (LDAP)
- [] Standard SDK for Windows CE
- [] VBScript support
- [] Windows Media Audio/MP3
- [] Windows Media Video/MPEG-4 Video
- [] Windows Messenger
- [] WordPad
- [] Internet Browser
- [] Microsoft File Viewers
- [] Windows CE Error Reporting

Estimated size of these items: 10063 KB

New Platform Wizard - Step 6

Networking & Communications
Select items for networking and communications to include in your OS design.

Items:
- [] OBEX Server
- [] TCP/IPv6 Support
- [] Local Area Network (LAN)
- [] Personal Area Network (PAN)
- [] Remote Desktop Connection
- [] Wide Area Network (WAN)

The foundation of the OBEX Application Framework that provides support for both standard and user-defined services.

Estimated size of these items: 10924 KB
OBEX Server

Security Warning
Under certain circumstances, the Object Exchange Protocol (OBEX) catalog item can compromise the security of your platform. This catalog item poses the following potential security risks:
- If proper security and authentication techniques are not used, a service that interferes with services.exe can be installed.
- If proper encryption techniques are not used, OBEX running over Bluetooth could expose data packets to third parties.

To learn more about potential OBEX security risks, as well as the best practices for using this catalog item more securely, see the following topics:

OBEX Security
Enhancing the Security of a Device

Completing the New Platform Wizard

You have successfully completed the New Platform Wizard.

You have created an OS design for a Windows CE-based platform. By default, Platform Builder provides a Debug configuration and a Release configuration of this OS design.

Options:
- Modify build options for the Debug and Release configurations of your OS design without closing the wizard.

To close this wizard, click Finish.
5. Open Manage Catalog Items (File → Manage Catalog Items). Under Catalog (View → Catalog), browse \Third Party\Device Drivers\ MOXA Smartio/Industio-PCI, PC/104-Plus. Right-click on the driver Prefix COM or Prefix MXU you would like to include and choose Add to OS Design.

NOTE You can only select either Prefix COM or Prefix MXU, but not both.

Prefix COM supports up to 10 ports, from COM0 to COM9. Prefix MXU supports more than 10 ports, so it is better to select Prefix MXU if you are not sure how many ports the device has. Otherwise, you will only be allowed to use one multiport serial board on the target host.
6. After adding Moxa Tech drivers into your OS Design, a new project is automatically added to your workspace. The project name is `mxserce5`. The project can be accessed from File View (View → File View). The `mxserce5` project contains a number of files used to configure the drivers included in your OS Design.

NOTE

If you would like to use the "Terminal Emulator" tool, please modify `mxserce5.reg` and keyboard like below (This is only just for "one" "COM" port). You have to take note of the number of ports, COM, MXU, and enter the correct information.

```
[HKEY_LOCAL_MACHINE\ExtModems\HayesCompat1]
"Port"="COM2:"
"DeviceType"=dword:1
"FriendlyName"="Hayes Compatible on COM2:"
```
7. Finally, open Build OS, select Build and Sysgen, and be sure to click Copy Files to Release Directory After Build and Make Run-Time Image After Build.

8. Finally, copy your image file to the target host.

NOTE If you have created a Windows CE Platform Builder in the development environment, skip steps 2, 3, and 4.

Newer OS for Both CA/CB Series

The content below will describe the software installation for newer Windows OS, including Windows 2000/XP/2003/Vista/2008/7/8/8.1/10 (x86/x64), Windows Server 2008 R2/2012/2012 R2/2016 (x64)

The following topics include
- Installing the Driver
- Configuring the Ports
- Checking the Status
- Removing the Driver
- Uninstallation the Driver

We will take Window 7 (x64) for example, to let you know how to install your CA or CB boards. The installation procedure of Windows7 is similar to the other Windows platforms. The content describes how to install, configure, check the port status, remove, or uninstall the CA or CB boards.

NOTE In the installation section, the CA Series has more installation procedures as it follows the ISA standard. The content will be added, followed by the installation part of CB Series.
Installing the Driver

In this section, we will describe how to install the CA or CB boards for the first time with Windows 7. First, make sure that you have already plugged the board or boards into the system’s PC/104 or PC/104-Plus slot(s).

NOTE If you have already installed Moxa CA or CB board(s) in your computer, and you are installing additional boards, Windows 7 will automatically detect and install the new board(s) the next time you boot up the computer. In this case, proceed directly to the next section, “Configuring the Ports,” to configure the ports’ serial transmission parameters.

Second, download the drivers at www.moxa.com. Based on the OS type, choose the corresponding driver. Then, follow the following procedures to install the driver.

1. The Setup Wizard will open. Click **Next** to install the driver.

2. Please read the license agreement. If you agree, click **Next** to move on.
3. Click **Next** to install the driver in the indicated folder, or use the drop-down folder list to locate a different folder.

![Select Destination Location](image)

Select Destination Location
Where should Moxa Smartio/InduStio Windows Driver be installed?

Setup will install Moxa Smartio/InduStio Windows Driver into the following folder:

To continue, click Next. If you would like to select a different folder, click Browse.

![Directory Path](image)

At least 0.8 MB of free disk space is required.

![Next, Cancel, and Back buttons](image)

4. Click **Install** to proceed with the installation.

![Ready to Install](image)

Ready to Install
Setup is now ready to begin installing Moxa Smartio/InduStio Windows Driver on your computer.

Click Install to continue with the installation, or click Back if you want to review or change any settings.

![Destination Location](image)

![Next, Install, and Cancel buttons](image)
5. Click **Finish** to complete the installation of the driver.

If your model is from the CB Series, then the installation is done. Otherwise, you need to do the following steps to complete the installation for the CA Series (CA-114 Series is taken as example).

1. Select **Add Hardware Wizard** from the Control Panel. When the wizard opens, click **Next** to continue.
2. Select **Yes, I have already connected the hardware** and click **Next** to continue.

3. Select **Add a new hardware device** and click **Next** to continue.
4. Select Install the hardware that I manually select from a list (Advanced) and click Next to continue.

5. Select Multi-port serial adapters and click Next to continue.
6. Select your CA Series model and click **Next** to continue.

7. To begin installing the module, click **Next**.
8. If you see a warning that the software has not passed Windows Logo testing, click **Continue Anyway**.

9. Windows will install the drivers. When the installation has been completed, click **Finish**.
10. After the module has been installed, you will be prompted to install the new serial ports. A **Found New Hardware Wizard** window will open for the first serial port, port 0. Select **No, not this time** and click **Next**.

11. Select **Install from a list or specific location (Advanced)** and click **Next**.
12. Select **Search for the best driver in these locations** and **Include this location in the search**. Select the `\Program Files\MOXA\SmartIOIndustioDriver` folder on the C drive disk, and click **Next**.

13. If you see a warning that the software has not passed Windows Logo testing, click **Continue Anyway**.

14. Windows will install the necessary drivers.
15. After the installation is complete, click Finish.

16. Repeat the installation process for the remaining serial ports.

Configuring the Ports

After the driver has been installed, use Device Manager to configure the serial port of your CA or CB boards (CB-134I Series will be used as example).

In this section, we describe how to access MOXA Smartio/Industio Window Driver and lead you to do the serial port configuration.

- Accessing MOXA Smartio/Industio Window Driver
- Configuring Serial Port
 - Port Number
 - Rx, TX FIFO
Accessing MOXA Smartio/Industio Window Driver

Expand the Multi-port serial adapters tab, right-click CB-134I Series (PC/104-Plus), and then click Properties to open the board's configuration panel.

Configuring the Serial Ports

Port Number

1. Click the port you would like to configure to highlight it and then click Port Setting.
2. Select a COM number for the port from the Port Number pull-down list. Select the Auto Enumerating COM Number option to map subsequent ports automatically. The port numbers will be assigned in sequence. For example, if COM 1 is assigned to Port 1, then COM 2 (if not already occupied) will be assigned to Port 2, etc.

```
Port 1

Port Number: COM1 (current)
✓ Auto Enumerating COM Number

Rx FIFO Level: High
✓ Set the change to all ports

Tx FIFO Level: High
✓ Set the change to all ports

OK  |  Cancel
```

Rx, TX FIFO

1. Select an Rx FIFO Trigger from the Rx FIFO Level pull-down list. Rx FIFO trigger levels of High, Middle, and Low are available, with the default set to High. Select the Set the change to all ports option to apply this Rx FIFO Trigger to all ports.

2. Select a Tx FIFO Level from the Tx FIFO Level pull-down list. Tx FIFO Levels of High, Middle, and Low are available, with the default set to High. Select the Set the change to all ports option to apply the just defined Tx FIFO Size to all ports.

<table>
<thead>
<tr>
<th></th>
<th>TX FIFO (Byte)</th>
<th>RX FIFO (Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CA Series</td>
<td>CB Series</td>
</tr>
<tr>
<td>High</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Middle</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Low</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Click OK to save the port settings and then click OK in the Property window to finish the port settings procedure.

Checking the Status

The PComm Diagnostic program is a useful tool to check the status of Moxa’s multiport serial boards. The program can be used to test internal and external IRQ, TxD/RxD, UART, CTS/RTS, DTR/DSR, etc. Use this program to ensure that your Moxa boards and ports are working properly.
To start the program, click **Start** → **Programs** → **MOXA** → **PComm Ver 1.X** → **PComm Diagnostic**

NOTE
You can download the PComm Lite software for free from Moxa's website at www.moxa.com/support/free_downloads.htm.
Removing the Driver

1. Open the Device Manager and use the mouse to place the cursor over the **MOXA CB-134I Series (PC/104-Plus boards)** under Multi-port serial adapters, right-click, and then select the Uninstall option.

2. Select **Delete the driver software for this device** and click **OK** to proceed with uninstalling the board.
Uninstalling the Driver

The MSB driver may be removed through Add/Remove Programs in the Windows Control Panel. Click Uninstall next to MOXA Smartio/Industio Windows Driver Verx.xx
Non-Windows OS

Linux

1. Execute the following commands from the Linux prompt:
 # mount /dev/cdrom /mnt/cdrom
 # cd /
 # mkdir moxa
 # cd moxa
 # cp /mnt/cdrom/<driver directory>/mxpcdrv.tgz .
 # tar xvfz mxpcdrv.tgz
2. # cd mxpcdrv
 # make clean; make install
3. # cd /moxa/mxpcdrv/driver
 # ./mpmknod
4. Install the module driver using the hardware settings that you selected. For example, for an I/O address of 0x180, an INT vector of 0x1C0, and an IRQ of 10, execute the following command:
 # modprobe mxpcdrv ioaddr=0x180 iovect=0x1C0 irq=10
 (This step is only for CA Series)
5. You can use the Moxa diagnostic utility to verify the driver’s status:
 # cd /moxa/mxpcdrv/utility/diag
 #./msdiag
6. You can use the Moxa terminal utility to test the TTY ports:
 # cd /moxa/mxpcdrv/utility/term
 #./msterm
Moxa provides Windows serial programming libraries and troubleshooting utilities that are easy to use and powerful. You can use these tools to reduce software development time.

The serial communication library is useful for developing applications for data communications, remote access, data acquisition, and industrial control. It provides a simpler solution compared to the more complex Windows Win32 COMM API.

PComm is a professional serial communication tool for Windows PCs. PComm includes the following features:

- Useful utilities for diagnostics, port monitoring, and terminal emulation
- Sample programs
- Comprehensive help files

The following topics are covered in this chapter:

- **Serial Programming Library**
- **PComm Utilities**
 - Installation
 - PComm Diagnostic
 - PComm Monitor
 - PComm Terminal Emulator
Serial Programming Library

The serial programming library assists you in developing serial communications programs for any COM port that complies with the Microsoft Win32 API. It facilitates the implementation of multi-process and multi-thread serial communication programs and can remarkably reduce development time.

The library provides a complete set of functions as well as various sample programs for Visual C++, Visual Basic, and Delphi. To view detailed descriptions of the available functions and sample programs, go to Start → Program → PComm Lite and select PComm Lib Help, PComm Porting Notes, or PComm Programming Guide. You may also refer to the sample programs in the PComm directory.

PComm Utilities

This sections provides brief descriptions of the PComm utilities. For more information about these utilities, please refer to the help files or to the API-232.txt file for DOS.

Installation

To install PComm, run Setup.exe from the installation diskette. Please note that the PComm diagnostic and monitor utilities are for Moxa boards only. These two utilities will not work with other serial boards.

PComm Diagnostic

PComm Diagnostic is designed for Moxa boards only. It provides internal and external testing of IRQ, TxD/RxD, UART, CTS/RTS, DTR/DSR, DTR/DCD, and other items. You can use PComm Diagnostic to check the operation of both software and hardware.

To run the Diagnostic program, go to Start → Program → PComm Lite → Diagnostic.
PComm Monitor

PComm Monitor is designed for Moxa board in Windows NT only. It allows you to monitor data transmission of selected Moxa COM ports. It monitors data transmission, throughput, and line status at regular intervals. Click on a specific port to view that port's communication parameters and status.

To run PComm Monitor, go to Start → Program → PComm Lite → Monitor.

PComm Terminal Emulator

PComm Terminal Emulator can be used to connect to a serial port to verify that data transmission is functioning correctly. It supports multiple windows and both VT100 and ANSI terminal types. You can interactively transfer data, periodically send patterns, and transfer files using ASCII, XMODEM, YMODEM, ZMODEM, and KERMIT protocols.

To run PComm Terminal Emulator, go to Start → Program → PComm Lite → Terminal Emulator.
If you want to develop your own driver, no matter whether it is on a Windows or Linux platform, Moxa Smartio/Industio Programming Guide is very useful.

The following topics are covered in this chapter:

- Relative Product List
- Resource Requirement for Moxa Board
- PCI Configuration for Moxa Board
- UART Register Structure for MU860 chip
- UART Register Structure for MUE250, MUE450, and MUE850 chips
- For Baud Rate Setting
- Moxa Board PCI Device ID List
- UART Datasheet
Relative Product List

Please see the "Moxa Board PCI Device ID List" at the end of this document.

Resource Requirement for Moxa Board

- **IRQ**: 1
- **I/O**:
 - UART register: 64 bytes (8 bytes/port * 8port) for MU860
 - 4096 bytes (512 bytes/port * 8port) for MUE250/450/850
- **IRQ Vector register**: 16 bytes (only 1 byte is used)

PCI Configuration for Moxa Board

A. **MOXA Vendor ID**: 0x1393
B. **Device ID**: Please see the "Moxa Board PCI Device ID List" section
C. **Hardware resources on the Device Configuration Register of the PCI configuration space**:

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Chip</th>
<th>Address Offset</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRQ</td>
<td>All</td>
<td>0x3C</td>
<td></td>
</tr>
<tr>
<td>IRQ Vector Address</td>
<td>MU860</td>
<td>0x1C</td>
<td>BAR3 16 bytes</td>
</tr>
<tr>
<td>UART register (I/O Base Address)</td>
<td>MU860</td>
<td>0x18</td>
<td>BAR2 64 bytes</td>
</tr>
<tr>
<td>UART register (Memory Base Address)</td>
<td>MUE250, MUE450, MUE850</td>
<td>0x14</td>
<td>BAR1 4096 bytes</td>
</tr>
<tr>
<td>Vector Base Address</td>
<td>MUE250, MUE450, MUE850</td>
<td>0x18</td>
<td>BAR2 16 bytes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>0-7</th>
<th>8-15</th>
<th>16-23</th>
<th>24-31</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Vendor ID</td>
<td>Device ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04h</td>
<td>Command</td>
<td>Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08h</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0Ch</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10h</td>
<td>BAR0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14h</td>
<td>BAR1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18h</td>
<td>BAR2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Ch</td>
<td>BAR3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ch</td>
<td>Interrupt Line</td>
<td>Interrupt Pin</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

For MUE250, MUE450, and MUE850 chips only:

Memory mode is recommended for these chips to access UART. To use memory mode, the driver has to access the memory base address, which is located at BAR1.
NOTE For a detailed UART register description, please see the "UART Datasheet" section.

- UART register address = I/O base address + (port-1) * 8

For example, if the base address is 0x180:

The first port's UART registered I/O address is 0x180+(1-1)*8 = 0x180

The first registered I/O address is 0x180,

The second registered I/O address is 0x181, ...

The second port's UART registered I/O address is 0x180+(2-1)*8 = 0x188

The first registered I/O address is 0x188,

The second registered I/O address is 0x189, ...

- IRQ Vector Register Structure

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Interrupt pending. Please read the UART register to get the detail interrupt information .</td>
</tr>
<tr>
<td>1</td>
<td>No interrupt pending.</td>
</tr>
</tbody>
</table>

All serial ports on the same Moxa board use the same IRQ. Check the vector to determine which port issues the interruption. You can also get the information by querying the IIR of each port.
UART Register Structure for MUE250, MUE450, and MUE850 chips

There are 512 bytes for each UART register and 0x200 offset between each port. However, there is one exception, for the models which are 4-port boards, such as CP-104EL-A, CP-114EL, CP-114EL-I, and CP-134EL-A, the offset of the fourth UART register is 0xE00.

NOTE For a detailed UART register description, please see the "UART Datasheet" section.

- **UART register address = I/O base address + (port-1) * 0x200**

 For example, if base address is 0x200:

 The first port’s UART registered I/O address is 0x200 + (1-1) * 0x200 = 0x200

 The second registered I/O address is 0x201, ...

 The second port’s UART registered I/O address is 0x200 + (2-1) * 0x200 = 0x400

 The first registered I/O register is 0x400,

 The second registered I/O register is 0x401, ...

NOTE For CP-104EL-A, CP-114EL, CP-114EL-I, and CP-134EL-A only:

 The first port’s UART registered address: I/O base address

 The second port’s UART registered address: I/O base address + 1 * 0x200

 The third port’s UART registered address: I/O base address + 2 * 0x200

 The fourth port’s UART registered address: I/O base address + 7 * 0x200

Type note content here.
- **Control Serial Interface and Termination Resistor for MUE chips**

 For Moxa boards that use MUE250, MUE450, and MUE850 chips, BAR2, which is allocated 16 bytes, is the vector base address that can be used to control the serial interface and termination resistor according to the following table.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bit</th>
<th>Port #</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x4</td>
<td>[3..0]</td>
<td>1</td>
<td>0x0 : RS-232</td>
</tr>
<tr>
<td></td>
<td>[7..4]</td>
<td>2</td>
<td>0x1 : RS-422</td>
</tr>
<tr>
<td>0x5</td>
<td>[3..0]</td>
<td>3</td>
<td>0xF : RS-485 2W</td>
</tr>
<tr>
<td></td>
<td>[7..4]</td>
<td>4</td>
<td>0xB : RS-485 4W</td>
</tr>
<tr>
<td>0x6</td>
<td>[3..0]</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[7..4]</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0x7</td>
<td>[3..0]</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[7..4]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0x8</td>
<td>[7..0]</td>
<td>[8..1]</td>
<td>GPIO – Input</td>
</tr>
<tr>
<td>0x9</td>
<td>[7..0]</td>
<td>[8..1]</td>
<td>GPIO direction configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 : Set GPIO direction to input</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 : Set GPIO direction to output</td>
</tr>
<tr>
<td>0xA</td>
<td>[7..0]</td>
<td>[8..1]</td>
<td>GPIO – Output (Termination Resistor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 : Low (0 Ohm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 : High (120 Ohm)</td>
</tr>
</tbody>
</table>

Especially, the interface of 4-port models, such as CP-114EL and CP-114EL-I, is using the following offset to set the interface of port 4.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Bit</th>
<th>Port #</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x4</td>
<td>[3..0]</td>
<td>1</td>
<td>0x0 : RS-232</td>
</tr>
<tr>
<td></td>
<td>[7..4]</td>
<td>2</td>
<td>0x1 : RS-422</td>
</tr>
<tr>
<td>0x5</td>
<td>[3..0]</td>
<td>3</td>
<td>0xF : RS-485 2W</td>
</tr>
<tr>
<td></td>
<td>[7..4]</td>
<td>-</td>
<td>0xB : RS-485 4W</td>
</tr>
<tr>
<td>0x6</td>
<td>[3..0]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[7..4]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0x7</td>
<td>[3..0]</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

For Baud Rate Setting

For General PC Com Port: CLK=1.8432MHz

\[\text{Div} = \frac{\text{CLK}}{\text{Baud} \times 16} \]

But for Moxa Board: CLK=14.7456MHz

\[\text{Div} = \frac{\text{CLK}}{\text{Baud} \times 16} \]
Moxa Board PCI Device ID List

<table>
<thead>
<tr>
<th>Model</th>
<th>Ports</th>
<th>Bus</th>
<th>Chip</th>
<th>Max Baud</th>
<th>Vendor ID</th>
<th>Device ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-102U</td>
<td>2</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1022</td>
</tr>
<tr>
<td>CP-102UL</td>
<td>2</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1021</td>
</tr>
<tr>
<td>CP-132UL</td>
<td>2</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1321</td>
</tr>
<tr>
<td>CP-132UL-I</td>
<td>2</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1321</td>
</tr>
<tr>
<td>CP-102E</td>
<td>2</td>
<td>PCIe</td>
<td>MUE250</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1024</td>
</tr>
<tr>
<td>CP-102EL</td>
<td>2</td>
<td>PCIe</td>
<td>MUE250</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1025</td>
</tr>
<tr>
<td>CP-132EL</td>
<td>2</td>
<td>PCIe</td>
<td>MUE250</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1322</td>
</tr>
<tr>
<td>CP-132EL-I</td>
<td>2</td>
<td>PCIe</td>
<td>MUE250</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1322</td>
</tr>
<tr>
<td>CP-104UL</td>
<td>4</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1041</td>
</tr>
<tr>
<td>CP-104JU</td>
<td>4</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1042</td>
</tr>
<tr>
<td>CP-114UL</td>
<td>4</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1143</td>
</tr>
<tr>
<td>CP-114UL-I</td>
<td>4</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1143</td>
</tr>
<tr>
<td>CP-134U</td>
<td>4</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1340</td>
</tr>
<tr>
<td>CP-134U-I</td>
<td>4</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1340</td>
</tr>
<tr>
<td>CP-104EL-A</td>
<td>4</td>
<td>PCIe</td>
<td>MUE450</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1045</td>
</tr>
<tr>
<td>CP-114EL-A</td>
<td>4</td>
<td>PCIe</td>
<td>MUE450</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1144</td>
</tr>
<tr>
<td>CP-114EL-I</td>
<td>4</td>
<td>PCIe</td>
<td>MUE450</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1144</td>
</tr>
<tr>
<td>CP-134EL-A</td>
<td>4</td>
<td>PCIe</td>
<td>MUE450</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1342</td>
</tr>
<tr>
<td>CB-114</td>
<td>4</td>
<td>PC/104-Plus</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1142</td>
</tr>
<tr>
<td>CB-134I</td>
<td>4</td>
<td>PC/104-Plus</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1341</td>
</tr>
<tr>
<td>CP-118U</td>
<td>8</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1180</td>
</tr>
<tr>
<td>CP-118U-I</td>
<td>8</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1180</td>
</tr>
<tr>
<td>CP-138U</td>
<td>8</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1380</td>
</tr>
<tr>
<td>CP-138U-I</td>
<td>8</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1380</td>
</tr>
<tr>
<td>CP-168U</td>
<td>8</td>
<td>UPCI</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1681</td>
</tr>
<tr>
<td>CP-116E-A(A)</td>
<td>8</td>
<td>PCIe</td>
<td>MUE850</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1160</td>
</tr>
<tr>
<td>CP-116E-A(B)</td>
<td>8</td>
<td>PCIe</td>
<td>MUE850</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1160</td>
</tr>
<tr>
<td>CP-116E-A(I)</td>
<td>8</td>
<td>PCIe</td>
<td>MUE850</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1161</td>
</tr>
<tr>
<td>CP-138E-A(I)</td>
<td>8</td>
<td>PCIe</td>
<td>MUE850</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1381</td>
</tr>
<tr>
<td>CP-168E-A(I)</td>
<td>8</td>
<td>PCIe</td>
<td>MUE850</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1683</td>
</tr>
<tr>
<td>CB-10B</td>
<td>8</td>
<td>PC/104-Plus</td>
<td>MU860</td>
<td>921.6k</td>
<td>0x1393</td>
<td>0x1080</td>
</tr>
</tbody>
</table>

UART Datasheet

Moxa’s chips are compatible with the following chips. For more details about the UART register description, please refer to the downloaded links below.

<table>
<thead>
<tr>
<th>UART</th>
<th>Port</th>
<th>Datasheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU-860</td>
<td>2-8</td>
<td>TL16C550C</td>
</tr>
<tr>
<td>MUE-250</td>
<td>2</td>
<td>PI7C9X7952</td>
</tr>
<tr>
<td>MUE-450</td>
<td>4</td>
<td>PI7C9X7954</td>
</tr>
<tr>
<td>MUE-850</td>
<td>8</td>
<td>PI7C9X7958</td>
</tr>
</tbody>
</table>
The box header connector(s) on the module is used to connect to serial devices. Optional cables are available that provide DB9 or DB25 connectors. The pin assignments of the box header connectors and available cables are provided below.

Box Header Pin Assignments

RS-232

These pin assignments apply to the CA-108/CB-108, CA-114/CB114, and CA-104. Note that there are two 40-pin box header connectors on the CA-108/CB108, each of which connects to 4 serial ports.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD0</td>
<td>11</td>
<td>DCD1</td>
<td>21</td>
<td>DCD2</td>
<td>31</td>
<td>DCD3</td>
</tr>
<tr>
<td>2</td>
<td>DSR0</td>
<td>12</td>
<td>DSR1</td>
<td>22</td>
<td>DSR2</td>
<td>32</td>
<td>DSR3</td>
</tr>
<tr>
<td>3</td>
<td>Rx0</td>
<td>13</td>
<td>Rx1</td>
<td>23</td>
<td>Rx2</td>
<td>33</td>
<td>Rx3</td>
</tr>
<tr>
<td>4</td>
<td>RTS0</td>
<td>14</td>
<td>RTS1</td>
<td>24</td>
<td>RTS2</td>
<td>34</td>
<td>RTS3</td>
</tr>
<tr>
<td>5</td>
<td>Tx0</td>
<td>15</td>
<td>Tx1</td>
<td>25</td>
<td>Tx2</td>
<td>35</td>
<td>Tx3</td>
</tr>
<tr>
<td>6</td>
<td>CTS0</td>
<td>16</td>
<td>CTS1</td>
<td>26</td>
<td>CTS2</td>
<td>36</td>
<td>CTS3</td>
</tr>
<tr>
<td>7</td>
<td>DTR0</td>
<td>17</td>
<td>DTR1</td>
<td>27</td>
<td>DTR2</td>
<td>37</td>
<td>DTR3</td>
</tr>
<tr>
<td>8</td>
<td>---</td>
<td>18</td>
<td>---</td>
<td>28</td>
<td>---</td>
<td>38</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>GND0</td>
<td>19</td>
<td>GND1</td>
<td>29</td>
<td>GND2</td>
<td>39</td>
<td>GND3</td>
</tr>
<tr>
<td>10</td>
<td>---</td>
<td>20</td>
<td>---</td>
<td>30</td>
<td>---</td>
<td>40</td>
<td>---</td>
</tr>
</tbody>
</table>

RS-422, 4-wire RS-485

These pin assignments apply to the CA-132, CA-132I, CA-114/CB-114, and CA-134I/CB1341. With regard to the CA Series, pins 21 to 40 apply to the CA-114 and CA-134I only.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
<th>Pin*</th>
<th>Signal*</th>
<th>Pin*</th>
<th>Signal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tx0-(A)</td>
<td>11</td>
<td>Tx1-(A)</td>
<td>21</td>
<td>Tx2-(A)</td>
<td>31</td>
<td>Tx3-(A)</td>
</tr>
<tr>
<td>3</td>
<td>Tx0+(B)</td>
<td>13</td>
<td>Tx1+(B)</td>
<td>23</td>
<td>Tx2+(B)</td>
<td>33</td>
<td>Tx3+(B)</td>
</tr>
<tr>
<td>5</td>
<td>Rx0+(B)</td>
<td>15</td>
<td>Rx1+(B)</td>
<td>25</td>
<td>Rx2+(B)</td>
<td>35</td>
<td>Rx3+(B)</td>
</tr>
<tr>
<td>7</td>
<td>Rx0-(A)</td>
<td>17</td>
<td>Rx1-(A)</td>
<td>27</td>
<td>Rx2-(A)</td>
<td>37</td>
<td>Rx3-(A)</td>
</tr>
<tr>
<td>9</td>
<td>GND0</td>
<td>19</td>
<td>GND1</td>
<td>29</td>
<td>GND2</td>
<td>39</td>
<td>GND3</td>
</tr>
</tbody>
</table>
2-wire RS-485

These pin assignments apply to the CA-132, CA-132I, CA-114/CB-114, and CA-134I/CB-134I. With regard to the CA series, pins 21 to 40 apply to the CA-114 and CA-134I only.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
<th>Pin*</th>
<th>Signal*</th>
<th>Pin*</th>
<th>Signal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Data0+(B)</td>
<td>15</td>
<td>Data1+(B)</td>
<td>25</td>
<td>Data2+(B)</td>
<td>35</td>
<td>Data3+(B)</td>
</tr>
<tr>
<td>7</td>
<td>Data0-(A)</td>
<td>17</td>
<td>Data1-(A)</td>
<td>27</td>
<td>Data2-(A)</td>
<td>37</td>
<td>Data3-(A)</td>
</tr>
<tr>
<td>9</td>
<td>GND0</td>
<td>19</td>
<td>GND1</td>
<td>29</td>
<td>GND2</td>
<td>39</td>
<td>GND3</td>
</tr>
</tbody>
</table>