
ioPAC 8600 CPU30 C Version Software
User’s Manual

Edition 1.0, July 2017

www.moxa.com/product

© 2015 Moxa Inc. All rights reserved.

ioPAC 8600 CPU30 C Version Software
User’s Manual

The software described in this manual is furnished under a license agreement and may be used only in accordance with
the terms of that agreement.

Copyright Notice

© 2017 Moxa Inc. All rights reserved.

Trademarks

The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of
Moxa.

Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited
to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the
products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for
its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

www.moxa.com/support

Moxa Americas
Toll-free: 1-888-669-2872
Tel: +1-714-528-6777
Fax: +1-714-528-6778

 Moxa China (Shanghai office)
Toll-free: 800-820-5036
Tel: +86-21-5258-9955
Fax: +86-21-5258-5505

Moxa Europe
Tel: +49-89-3 70 03 99-0
Fax: +49-89-3 70 03 99-99

 Moxa Asia-Pacific
Tel: +886-2-8919-1230
Fax: +886-2-8919-1231

Moxa India
Tel: +91-80-4172-9088
Fax: +91-80-4132-1045

Table of Contents

1. Introduction .. 1-1
Overview ... 1-2

Scope .. 1-2
Related Documents ... 1-2
Supported Products ... 1-2

Software Architecture .. 1-2
Software Package .. 1-4

2. Getting Started ... 2-1
Developing the First Program ... 2-2

Hardware Requirements ... 2-2
Development Procedure ... 2-2

Configuring the Ethernet Interface .. 2-2
Modifying Network Settings with the Serial Console ... 2-2
Modifying Network Settings over the Network ... 2-3

Connecting an ioPAC Controller to a Linux PC ... 2-3
Installing the Toolchain on the PC ... 2-4
Configuring Cross Compiler and glibc Environment Variables .. 2-4
Developing Code and Compiling a Program .. 2-4
Upload and Run the Program.. 2-5
Systemctl Command ... 2-6

3. Controller Management ... 3-1
System Information .. 3-2
Firmware Upgrade and Default Settings ... 3-2

Upgrading the Firmware ... 3-2
Loading Factory Defaults .. 3-4

Enabling and Disabling Daemons .. 3-4
System Time Setting ... 3-4

Setting the Time Manually .. 3-4
Using NTP Client to update the Time .. 3-5
Configuring the NTP Server .. 3-5

Executing Scheduled Commands with Cron Daemon ... 3-5
File System .. 3-6
Web Server .. 3-7
LOG .. 3-9

4. Controller Communications ... 4-1
Internet Configuration ... 4-2

Modbus TCP Master and Slave... 4-2
DNS .. 4-2
FTP .. 4-2
Telnet .. 4-3
SSH ... 4-3
Iptables ... 4-3
NAT (SNAT) .. 4-4
Port Forwarding (DNAT) ... 4-5
PPPoE .. 4-5
NFS (Network File System) Client .. 4-6
Sending Mail ... 4-7
OpenVPN .. 4-7

Routed VPN Tunnels ... 4-7
Bridged Ethernet Tunnels .. 4-9

IPSec VPN .. 4-10
NTP Server/Client .. 4-11
Port Trunking .. 4-11
DDNS .. 4-12
opkg .. 4-12

Install ... 4-13
Remove .. 4-13

5. Controller Data Acquisition ... 5-1
I/O Data Access ... 5-2
Data Backup Memory .. 5-2
Millisecond Timestamp .. 5-2
MX-AOPC UA Server .. 5-2

6. Controller Programming .. 6-1
Programming Guide .. 6-2

Memory Usage .. 6-2
Using C/C++ .. 6-2

Linux Toolchain ... 6-2
GDB .. 6-3
Library and APIs .. 6-4

A. System Commands .. A-1
Special Moxa Utilities .. A-1

1
1. Introduction

The following topics are covered in this chapter:

 Overview

 Scope

 Related Documents

 Supported Products

 Software Architecture

 Software Package

ioPAC 8600 CPU30 C Version Introduction

 1-2

Overview
In this section, we describe the scope of this document, and list relevant reference documents, and supported
products.

Scope
The purpose of this document is to help users set up and configure the ioPAC controller and quickly become
familiar with the programming environment. The following topics are covered in this document:

 Introduction

 Getting Started

 Controller Management

 Controller Communications

 Controller Data Acquisition

 Controller Programming

The following information is provided in the Appendix:

 System Commands

Related Documents
Additional information about ioPAC controller features is available in the following manuals, which can be
downloaded from Moxa’s website:

 ioPAC 8600 Hardware User’s Manual

 C/C++ Sample Code Programming Guide for ioPAC Programmable Controllers

Supported Products
In this document, we cover the following products:

 ioPAC 8600-CPU30 Series

Software Architecture
The ioPAC CPU30 Programmable Controller uses an ARM Cortex™ A8-based industrial-grade CPU for the
system and ARM Cortex™ M4-based CPUs for the modules. It provides up to 4 GB eMMC, 512 MB SDRAM, and
a microSD socket (up to 32 GB) for users to install application software and to store data directly on the
controller.

The pre-installed operating system (OS) provides an open platform for software program development, which
follows a standard Linux-based architecture. Software that runs on desktop PCs can be easily exported to the
controller with a cross compiler. Program porting can be done with the toolchain provided by Moxa.

The built-in flash ROM is partitioned into the following directory partitions: Boot Loader, Kernel, Root File
System, and User. In order to prevent user applications from crashing the Root File System, the controller uses
a unique Root File System with Protected Configuration for emergency use. This Root File System comes with
serial and Ethernet communication capability for users to load the Factory Default Image file. User settings and
applications are saved in the User directory.

ioPAC 8600 CPU30 C Version Introduction

 1-3

The ioPAC CPU30 uses OverlayFS as the file system when Linux 4.0 is implemented. For more information
about OverlayFS, check the following links:

https://github.com/torvalds/linux/commit/e9be9d5e76e34872f0c37d72e25bc27fe9e2c54c

https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/

For more information about the memory map and programming, refer to the Programming Guide section in
Chapter 6.

https://github.com/torvalds/linux/commit/e9be9d5e76e34872f0c37d72e25bc27fe9e2c54c
https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/

ioPAC 8600 CPU30 C Version Introduction

 1-4

Software Package
System

Boot loader ioPAC 8600-CPU30 Boot Loader (v1.0)

Kernel Linux 4.1.15 with Real-time patch (PREEMPT_RT)

Protocol Stack ARP, PPP, CHAP, PAP, IPv4, ICMP, TCP, UDP, DHCP, FTP, HTTP, NTP, NFS, SMTP,
SSH 1.0/2.0, SSL, Telnet, PPPoE, OpenVPN, TFTP

File System Ext3, Ext2, Ext4, vfat, msdos, nfs, ntfs, overlay

OS Shell command Bash

Utilities

Busybox Linux normal command utility collection

telnet Telnet client program

ssh SSH client program

ftp FTP client program

smtpclient Email utility

ntpdate NTP client program

tftp TFTP client program

ddns NO-IP client program

Daemons

pppd Dial in/out over serial port daemon

PPPoE Point-to-Point over Ethernet daemon

telnetd Telnet server daemon

inetd TCP server manager program

ftpd FTP server daemon

sshd Secure shell server

openvpn Virtual private network

openssl Open SSL

ntpd NTP server daemon

HTTP server Monkey HTTP server

systemd-journald system log daemon

Linux Toolchain

gcc(v5.1.1) C/C++ PC Cross Compiler

gdb(v7.10.0) Source Level Debug Server

glibc(v2.21) POSIX standard C library

2
2. Getting Started

This chapter is intended as a quick start guide to help new users set up and configure the ioPAC Programmable
Controller quickly, and develop a simple program to run on the ioPAC Programmable Controller.

The following topics are covered in this chapter:

 Developing the First Program

 Hardware Requirements

 Development Procedure

 Configuring the Ethernet Interface

 Modifying Network Settings with the Serial Console

 Modifying Network Settings over the Network

 Connecting an ioPAC Controller to a Linux PC

 Installing the Toolchain on the PC

 Configuring Cross Compiler and glibc Environment Variables

 Developing Code and Compiling a Program

 Upload and Run the Program

 Systemctl Command

ioPAC 8600 CPU30 C Version Getting Started

 2-2

Developing the First Program
In this section, we list the hardware you will need to create your first program, and give an overview of the
program development procedure.

Hardware Requirements
The following hardware items are required to complete the first program:

 1 x ioPAC Programmable Controller

 1 x 24-110 VDC power supply

 1 x Ethernet cable

 1 x PC or laptop with following minimum requirements

 CPU: Intel Pentium 4 or above

 RAM: 512 MB (1024 MB recommended)

 HDD: at least 200 MB of free space

 Network Interface: 10/100M Ethernet

 Linux Operating System (we recommend Debian 6.0.1, Ubuntu 11.04, or Fedora Core 15)

Development Procedure
Take the following steps to develop your first program:

Step 1: Connect a Controller to a Linux PC

Step 2: Install the Toolchain onto the PC

Step 3: Configure Cross Compiler and glibc Environment Variables

Step 4: Develop the Code and Compile the Program

Step 5: Upload and Run the Program

Configuring the Ethernet Interface
The network settings of the ioPAC Programmable Controller can be modified with the ioPAC’s serial console or
web console.

Modifying Network Settings with the Serial Console
In this section, we show how to use the serial console to configure the network interface. The default IP
addresses and port numbers are 192.168.127.254/24 for interface port eth0 and 192.168.126.254/24 for
interface port eth1. We illustrate how to configure both static and dynamic IP addresses for interface port eth0.

Static IP address:

1. Deactivate eth0.

[moxa@ioPAC8600 ~]$ sudo nmcli c down eth0

Connection 'eth0' successfully deactivated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/1)

2. Configure a static IP and gateway for eth0.

[moxa@ioPAC8600 ~]$ sudo nmcli c modify eth0 ipv4.method manual ipv4.addresses

192.168.127.254/24 ipv4.gateway 192.168.127.1

ioPAC 8600 CPU30 C Version Getting Started

 2-3

3. Activate eth0.

[moxa@ioPAC8600 ~]$ sudo nmcli c up eth0

Connection successfully activated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/2)

Dynamic IP Address:

1. Deactivate eth0.

[moxa@ioPAC8600 ~]# sudo nmcli c down eth0

Connection 'eth0' successfully deactivated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/1)

2. Configure eth0 to request an IP address dynamically.

[moxa@ioPAC8600 ~]# sudo nmcli c modify eth0 ipv4.method auto

3. Activate eth0.

[moxa@ioPAC8600 ~]# sudo nmcli c up eth0

Connection successfully activated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/2)

Modifying Network Settings over the Network
In this section, we show how to use the web console to configure the network interface over an Ethernet
connection. The default IP addresses and port numbers are 192.168.127.254/24 for interface port eth0 and
192.168.126.254/24 for interface port eth1. We illustrate how to configure a static IP address for interface
port eth0.

Static IP address:

1. Configure a static IP and gateway for eth0.

[moxa@ioPAC8600 ~]# sudo nmcli c modify eth0 ipv4.method manual ipv4.addresses

192.168.127.254/24 ipv4.gateway 192.168.127.1

2. Reboot the system.

[moxa@ioPAC8600 ~]# sudo reboot

Connecting an ioPAC Controller to a Linux PC
Take the following steps to establish a connection between the PC and the controller.

Step 1: Use an Ethernet cable to connect the PC’s Ethernet port to the ioPAC controller’s LAN1 or LAN2 port.

Step 2: Change the PC’s IP address as indicated below:

If the ioPAC controller is connected to: Set PC’s IP address to:
LAN1 (default IP: 192.168.127.254) 192.168.127.100

LAN2 (default IP: 192.168.126.254) 192.168.126.100

Step 3: Use the ssh command to access the ioPAC’s console.

[root@localhost ~]# ssh moxa@192.168.127.254

Step 4: When a connection between the PC and controller has been established, the following message will be
shown on the screen.

[root@localhost ~]$ ssh moxa@192.168.127.254

moxa@192.168.127.254's password:

[moxa@ioPAC8600 ~]$

mailto:moxa@192.168.127.254

ioPAC 8600 CPU30 C Version Getting Started

 2-4

Installing the Toolchain on the PC
The controller’s GNU toolchain requires approximately 2 GB of hard disk space on your PC. The controller’s
toolchain software is located on the Document and Software CD. To install the toolchain, insert the CD into your
PC’s CD-ROM and then issue the following commands:

[root@localhost ~]$ mount /dev/cdrom /mnt/cdrom

[root@localhost ~]$ unzip /mnt/cdrom/Software/Toolchain/

ioPAC_CPU30_toolchain_Vx.x.x.x_Buildxxxxxxxx.zip .

[root@localhost ~]$ sh

/mnt/cdrom/Software/Toolchain/ioPAC_CPU30_toolchain_Vx.x.x.x_Buildxxxxxxxx.sh

The toolchain will be installed automatically on the host Linux PC within a few minutes.

Configuring Cross Compiler and glibc
Environment Variables

Before compiling the program, issue the following commands to change the path to the directory that contains
the toolchain files (including the compiler, link, and library). Configuring the path allows you to run the compiler
from any directory.

[moxa@ioPAC8600 ~]# PATH=$PATH:/usr/local/arm-linux/bin:/usr/sbin

[moxa@ioPAC8600 ~]# export PATH

[moxa@ioPAC8600 ~]# LD_LIBRARY_PATH=/usr/local/arm-linux/tools/lib:/usr/lib

[moxa@ioPAC8600 ~]# export LD_LIBRARY_PATH

Developing Code and Compiling a Program
Use the hello_world.c sample program and makefile from the Software and Document CD to learn how to
develop code and compile a program on the ioPAC controller.

Type the following commands from the host PC to copy the files used for this example.

[moxa@ioPAC8600 ~]# cd /tmp/

root@moxa:/tmp# mkdir example

root@moxa:/tmp# cp –r /mnt/cdrom/Software/Sample/hello_world/* /tmp/example

To compile the program, go to the hello_world subdirectory and issue the following commands:

[moxa@ioPAC8600 ~]# cd/tmp/example/hello_world

root@moxa:/tmp/example/hello_world# make

The following response should be shown on the screen.

root@moxa:/tmp/example/hello_world# make

/usr/local/arm-linux/bin/arm-linux-gcc -I/usr/local/arm-linux/include

-I/usr/local/arm-linux/include/RTU -o hello_world hello_world.o

-L/usr/local/arm-linux/lib -lpthread -lmxml -L/usr/local/arm-linux/lib/RTU

-lmoxa_rtu -lrtu_common -ltag -Wl,-rpath,/lib/RTU/ -Wl,--allow-shlib-undefined

The hello_world-release and hello_world-debug executable files are described below:

• hello_world-release: an ARM platform executable file (created specifically to run on the Moxa Controllers)

• hello_world-debug: an ARM platform GDB debug server executable file

ioPAC 8600 CPU30 C Version Getting Started

 2-5

NOTE Since Moxa’s toolchain places a specially designed makefile in the /tmp/example/hello_world directory, be
sure to type the #make command from within that directory. If you type the #make command from any other
directory, the host Linux PC might use other system compilers (e.g., cc or gcc), resulting in errors.

Upload and Run the Program
In this section, we give step-by-step instructions that describe how to upload and run the hello_world.c
program. Before starting the process, set up the networking environment as follows:

• ioPAC 8600 IP: 192.168.127.254

• localhost IP: 192.168.127.1

• Make sure that the ioPAC 8600 and localhost can connect to each other over the network.

1. Start vftpd service on the ioPAC 8600.

[moxa@ioPAC8600 ~]$ sudo systemctl start vsftpd.service

2. Open the directory where the program will be saved on localhost.

[root@localhost ~]$ ls –hl
total 12
-rwxr-xr-x 1 root root 10.1K Jan 8 00:34 hello_world

3. Upload the program from localhost to the ioPAC8600.

[root@localhost ~]$ ftp 192.168.127.254
Connected to 192.168.127.254.
220 (vsFTPd 3.0.3)
Name (192.168.127.254:root): moxa
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> put hello_world
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
10340 bytes sent in 5.5e-05 seconds (179 Mbytes/s)
ftp> quit
221 Goodbye.

4. Open the directory where the program will be saved on the ioPAC8600.

[moxa@ioPAC8600 ~]$ ls -hl
total 12
-rw------- 1 moxa moxa 10.1K Jan 8 00:39 hello_world

5. Change the program to an executable file.

[moxa@ioPAC8600 ~]$ chmod +x hello_world

6. Run the program.

[moxa@ioPAC8600 ~]$./hello_world
Hello World

ioPAC 8600 CPU30 C Version Getting Started

 2-6

Systemctl Command
The following commands can be used with the ioPAC 8600 CPU30 Series to execute some services without
doing any settings in advance. To control a service, type the respective command after
[moxa@ioPAC8600 ~].

• list installed unit files
systemctl list-unit-files

• start the service
systemctl start [unit.service]

• stop the service
systemctl stop [unit.service]

• restart the service
systemctl restart [unit.service]

• enable the service to start on bootup
systemctl enable [unit.service]

• disable the service from starting on bootup
systemctl disable [unit.service]

• show service status
systemctl status [unit.service]

3
3. Controller Management

The following topics are covered in this chapter:

 System Information

 Firmware Upgrade and Default Settings

 Upgrading the Firmware

 Loading Factory Defaults

 Enabling and Disabling Daemons

 System Time Setting

 Setting the Time Manually

 Using NTP Client to update the Time

 Configuring the NTP Server

 Executing Scheduled Commands with Cron Daemon

 File System

 Web Server

 LOG

ioPAC 8600 CPU30 C Version Controller Management

 3-2

System Information
To determine the hardware capability of your ioPAC Programmable Controller and supported software functions,
check the version numbers of your ioPAC controller hardware, kernel, and user file system. When contacting
Moxa to determine the hardware version, you will need the Production S/N (serial number), which is located on
the ioPAC’s label.

To check the kernel version, type:
#kversion -a

[moxa@ioPAC8600 ~]$ sudo kversion -a

RTU version 1.0.0 build 2017/4/12:15

API version 1.0.0 build 2017/4/24:22

CPU Serial Number: 000000000000

CPU HW Version: 0.0.0.0

Backplane Serial Number: 000000000000

Backplane HW Version: 1.0.0.0

BIOS Version: 1.0.0.0

BIOS Builddate: 05/15/2017/11:42:01

Slot0 Module Info:

VID = 0x110a, PID = 0x5400, SerialNumber = ************

Hardware Version = 1.0.0, Firmware Version = 1.0.0 build 2015/2/11 18

NOTE The kernel version number is used for factory default configuration. You may download the latest firmware
version from Moxa’s website and then upgrade the ioPAC controller.

Firmware Upgrade and Default Settings

Upgrading the Firmware
The ioPAC CPU30’s bios, kernel, and root file system are combined into one firmware file, which can be
downloaded from Moxa’s website, www.moxa.com. The name of the file has the form
FWR_ioPAC_CPU30_x_x_x.hfm, with “x_x_x” indicating the firmware version. To upgrade the firmware,
download the firmware file to a PC, and then transfer the file to the ioPAC controller using a console port or SSH
console connection.

ATTENTION

Upgrading the firmware will erase all data on the flash ROM
If you are using the RAM disk to store code for your applications, beware that updating the firmware will erase
all of the data on the flash ROM. You should back up your application files and data before updating the
firmware.

Below we give step-by-step instructions that describe how to upgrade the firmware. Before starting the process,
set up the networking environment as follows:

• ioPAC 8600: 192.168.127.254

• localhost: 192.168.127.1

• make sure the ioPAC 8600 and localhost can connect to each other over the network

http://www.moxa.com/

ioPAC 8600 CPU30 C Version Controller Management

 3-3

1. Start the vftpd service on the ioPAC 8600.

[moxa@ioPAC8600 ~]$ sudo systemctl start vsftpd.service

2. Open the directory where the firmware is placed on localhost.

[root@localhost ~]$ ls -hl
total 59564
-rw-r--r-- 1 root root 58.2M Jan 7 23:57
FWR_ioPAC8600_CPU30_V1.0.0.2_Build17070414_STD.hfm

3. Upload the firmware from localhost to the ioPAC8600.

[root@localhost ~]$ ftp 192.168.127.254
Connected to 192.168.127.254.
220 (vsFTPd 3.0.3)
Name (192.168.127.254:root): moxa
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> put FWR_ioPAC8600_CPU30_V1.0.0.2_Build17070414_STD.hfm
200 PORT command successful. Consider using PASV.
150 Ok to send data.
226 Transfer complete.
60992896 bytes sent in 5.19 seconds (11.2 Mbytes/s)
ftp> quit
221 Goodbye.

4. Open the directory where the firmware will be saved on the ioPAC8600.

[moxa@ioPAC8600 ~]$ ls -hl
[moxa@ioPAC8600 ~]$ ls -hl
total 59564
-rw------- 1 moxa moxa 58.2M Jan 8 00:11
FWR_ioPAC8600_CPU30_V1.0.0.2_Build17070414_STD.hfm

5. Upgrade the ioPAC8600’s firmware.

[moxa@ioPAC8600 ~]$ sudo upgradehfm FWR_ioPAC8600_CPU30_V1.0.0.2_Build17070414_STD.hfm
Upgrade firmware utility version 1.4.
Verifying firmware file context...
The firmware file conext is OK.
This step will destory all your firmware.
Continue ? (Y/N) :
Decroty firmware file context...
CMD:gpg2 --yes --output decfile --decrypt encfile.pgp
gpg: encrypted with 1024-bit RSA key, ID DADEA8C9, created 2016-12-16
 "Moxa Dac <dac@moxa.com>"
The output file [RESCUE_ioPAC8600_CPU30] file length = 34603008, flash length = 34603008,
checksum = 0x3c23296c
Now change output file offset [64] to write output file header.
...
Whole HFM CRC32:0xc85f5259(without HFM head)
Change output file offset to [0] for updating firmware header.
Finish headerlength=64, totalfileno=24, checksum=0xc85f5259,
totallength=269069568(without HFM head)

NOTE Make sure the power supply is operating normally while upgrading the firmware. A power failure could cause
the firmware upgrade to fail, and could even damage the device.

ioPAC 8600 CPU30 C Version Controller Management

 3-4

NOTE The ioPAC 8600-CPU30 will enter recovery mode when a firmware upgrade fails. During the recovery process,
the ioPAC 8600-CPU30 will do a firmware upgrade three times automatically; the RDY LED will be green and
blinking. If the recovery is successful, the RDY LED will change to a solid green, at which point the ioPAC
8600-CPU30 is ready to use. If recovery fails, the RDY will change to solid red. If the recovery process fails
three times, please contact Moxa for assistance.

Loading Factory Defaults
Use the following procedure to reset the ioPAC to factory defaults. Note that when you reset the ioPAC, all of
your tag definitions, software programs, and files will be deleted, and the service and runtime engine will be
restarted.

ioPAC 8600-CPU30 Series
1. When the system is booting up and the RDY LED is blinking GREEN, hold the reset button.

2. Continue to hold the reset button until the RDY LED turns a solid RED, and then release the reset button.
It will take around 90 seconds to complete the factory reset process.

3. When the RDY LED starts blinking GREEN (indicating that the kernel is rebooting), factory mode is ready.

Enabling and Disabling Daemons
The ioPAC 8600-CPU30 uses systemctl to enable and disable daemons. Refer to the Systemctl command
section in this manual for details.

System Time Setting

Setting the Time Manually
The ioPAC Programmable Controller has two time settings: the system time, and the RTC (Real Time Clock)
time kept by the ioPAC hardware. Use the #date command to query the current system time or set a new
system time. Use the #hwclock command to query the current RTC time or set a new RTC time.

Use the following command to query the system time:
#date

Use the following command to query the RTC time:
#hwclock

Use the following command to set the system time:
#date YYYY.MM.DD-hh:mm:ss

YYYY = Year
MM = Month
DD = Date
hh = hour
mm = minute
ss = second

Use the following command to set the RTC time:
#hwclock –w

ioPAC 8600 CPU30 C Version Controller Management

 3-5

Below, we illustrate how to update the system time and set the RTC time.

[moxa@ioPAC8600 ~]$ date; sudo hwclock

Sat Jan 1 00:00:13 UTC 2000

Sat Jan 1 00:00:13 2000 0.000000 seconds

[moxa@ioPAC8600 ~]$ sudo date 2017.01.01-00:00:00; sudo hwclock -w

Sun Jan 1 00:00:00 UTC 2017

[moxa@ioPAC8600 ~]$ date; sudo hwclock

Sun Jan 1 00:00:05 UTC 2017

Sun Jan 1 00:00:05 2017 0.000000 seconds

Using NTP Client to update the Time
The ioPAC Programmable Controller has a built-in NTP (Network Time Protocol) client that is used to initialize
a time request to a remote NTP server. Use the following command to synchronize the time with the NTP
server.

[moxa@ioPAC8600 ~]# sudo ntpdate time.nist.gov

NOTE Before using the NTP client utility, check your IP and DNS settings to make sure that an Internet connection is
available. See Chapter 2 for instructions on how to configure the Ethernet interface; see Chapter 4 for DNS
settings information.

Configuring the NTP Server
To configure the ioPAC’s NTP server, first configure the time sync server at the path /etc/ntp.conf, and then
use the /etc/init.d/ntpd start command to start the NTP server.

[moxa@ioPAC8600 ~]# sudo systemctl start ntpd.service

NOTE ntpd and ntpdate cannot be used at the same time because both services share the same UDP port 123.
Remember to use hwclock-w to update the RTC time. Otherwise, the time sync settings will be lost after you
restart the device.

Executing Scheduled Commands with Cron
Daemon

Crond wakes up every minute and checks each command to see if it should be run at that time. Crontab files
have the following format:

Definition min hour date month week command

Range 0-59 0-23 1-31 1-12 0-7 (0 or 7 is Sunday)

The following steps illustrate how to configure Crond to execute the date command once every minute.

1. Start the crond service.

[moxa@ioPAC8600 ~]$ sudo systemctl start crond.service

ioPAC 8600 CPU30 C Version Controller Management

 3-6

2. Set the date command to run once every minute in crontab file format.

[moxa@ioPAC8600 ~]$ crontab -e

* * * * * /usr/bin/date

3. Check the results of the date execution.

[moxa@ioPAC8600 ~]$ sudo journalctl -u crond.service

-- Logs begin at Mon 2017-01-02 22:06:08 UTC, end at Mon 2017-01-02 22:23:24 UTC. --
Jan 02 22:07:39 ioPAC8600 systemd[1]: Started Periodic Command Scheduler.
Jan 02 22:10:00 ioPAC8600 crond[353]: Mon Jan 2 22:10:00 UTC 2017
Jan 02 22:11:00 ioPAC8600 crond[353]: Mon Jan 2 22:11:00 UTC 2017
Jan 02 22:12:00 ioPAC8600 crond[353]: Mon Jan 2 22:12:00 UTC 2017
Jan 02 22:13:00 ioPAC8600 crond[353]: Mon Jan 2 22:13:00 UTC 2017

File System
ioPAC controllers support two file system tools: e2fsprogs and dosfstools. The following examples illustrate
how to use these tools.

Example 1: Using e2fsprogs to format an SD card to ext4

1. Display all storage mount points.

[moxa@ioPAC8600 ~]# df –Th

Filesystem Type Size Used Available Use% Mounted on

None devtmpfs 234.2M 0 234.2M 0% /dev

Overlay overlay 1.9G 22.4M 1.8G 1% /

Tmpfs mpfs 246.7M 20.0K 246.6M 0% /dev/shm

Tmpfs tmpfs 246.7M 580.0K 246.1M 0% /run

/dev/mmcblk1p1 vfat 7.2G 4.0K 7.2G 0% /mnt/sd

2. Unmount the SD card.

[moxa@ioPAC8600 ~]# sudo umount /mnt/sd

3. Format the SD card to ext4.

[moxa@ioPAC8600 ~]# sudo mke2fs -t ext4 /dev/mmcblk1p1

mke2fs 1.42.13 (17-May-2015)

/dev/mmcblk1p1 contains a vfat file system

Proceed anyway? (y,n) y

Discarding device blocks: done

Creating filesystem with 1898496 4k blocks and 475136 inodes

Filesystem UUID: 7815f0b8-f62b-4b7b-ac1c-0a8bbe1df59c

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

4. Mount the SD card.

[moxa@ioPAC8600 ~]# sudo mount /dev/mmcblk1p1 /var/sd

ioPAC 8600 CPU30 C Version Controller Management

 3-7

5. Check that the SD card is formatted to ext4.

[moxa@ioPAC8600 ~]# df –Th

Filesystem Type Size Used Available Use% Mounted on

None devtmpfs 234.2M 0 234.2M 0% /dev

Overlay overlay 1.9G 22.4M 1.8G 1% /

Tmpfs tmpfs 246.7M 20.0K 246.6M 0% /dev/shm

Tmpfs tmpfs 246.7M 580.0K 246.1M 0% /run

/dev/mmcblk1p1 ext4 7.2G 4.0K 7.2G 0% /mnt/sd

Example 2: Using dosfstools to format an SD card to ext4

1. Display all storage mount points.

[moxa@ioPAC8600 ~]# df –Th

Filesystem Type Size Used Available Use% Mounted on

None devtmpfs 234.2M 0 234.2M 0% /dev

Overlay overlay 1.9G 22.4M 1.8G 1% /

Tmpfs tmpfs 246.7M 20.0K 246.6M 0% /dev/shm

Tmpfs tmpfs 246.7M 580.0K 246.1M 0% /run

/dev/mmcblk1p1 ext4 7.2G 4.0K 7.2G 0% /mnt/sd

2. Unmount the SD card.

[moxa@ioPAC8600 ~]# sudo umount /mnt/sd

3. Format the SD card to vfat.

[moxa@ioPAC8600 ~]# sudo mkdosfs /dev/mmcblk1p1

mkfs.fat 3.0.28 (2015-05-16)

4. Mount the SD card.

[moxa@ioPAC8600 ~]# sudo mount /dev/mmcblk1p1 /var/sd

5. Check that the SD card is formatted to ext4.

[moxa@ioPAC8600 ~]# df –Th

Filesystem Type Size Used Available Use% Mounted on

None devtmpfs 234.2M 0 234.2M 0% /dev

Overlay overlay 1.9G 22.4M 1.8G 1% /

Tmpfs tmpfs 246.7M 20.0K 246.6M 0% /dev/shm

Tmpfs tmpfs 246.7M 580.0K 246.1M 0% /run

/dev/mmcblk1p1 vfat 7.2G 4.0K 7.2G 0% /mnt/sd

Web Server
ioPAC controllers have a built-in web server tool for developing applications. In this section, we explain how to
use the web server tool.

http

[moxa@ioPAC8600 ~]# sudo systemctl start monkey.service

ioPAC 8600 CPU30 C Version Controller Management

 3-8

https

1. Include the monkey-tls.so plugin.

[moxa@ioPAC8600 ~]# sudo vi /etc/monkey/plugins.load

[PLUGINS]

 # Load /usr/lib/monkey-auth.so

 # Load /usr/lib/monkey-cgi.so

 # Load /usr/lib/monkey-cheetah.so

 # Load /usr/lib/monkey-dirlisting.so

 # Load /usr/lib/monkey-fastcgi.so

 # Load /usr/lib/monkey-logger.so

 # Load /usr/lib/monkey-mandril.so

 Load /usr/lib/monkey-tls.so

 # Load /usr/lib/monkey-duda.so

2. Modify the listen port.

[moxa@ioPAC8600 ~]# sudo vi /etc/monkey/monkey.conf

[SERVER]

 Listen 443 tls

 Workers 0

 Timeout 15

 PidFile /var/run/monkey.pid

 UserDir public_html

 Indexfile index.html index.htm index.php

 HideVersion Off

 Resume On

 User www-data

 KeepAlive On

 KeepAliveTimeout 5

 MaxKeepAliveRequest 1000

 MaxRequestSize 32

 SymLink Off

 DefaultMimeType text/plain

 FDT On

 OverCapacity Resist

 # FDLimit 4096

3. Open the tls directory.

[moxa@ioPAC8600 ~]# cd /etc/monkey/plugins/tls/

4. Check the tls.conf settings.

[moxa@ioPAC8600 tls]# cat tls.conf

[TLS]

 CertificateFile srv_cert.pem

 # CertificateChainFile srv_cert_chain.pem

 RSAKeyFile rsa_key.pem

 DHParameterFile dhparam.pem

ioPAC 8600 CPU30 C Version Controller Management

 3-9

5. Use rsa_key.pem to generate RSAKeyFile.

[moxa@ioPAC8600 tls]# sudo openssl genrsa -out rsa_key.pem 1024

Generating RSA private key, 1024 bit long modulus

..++++++

...++++++

e is 65537 (0x10001)

6. Use srv_cert.pem to generate CertificateFile.

[moxa@ioPAC8600 tls]# sudo openssl req -new -x509 -key rsa_key.pem -out srv_cert.pem

-days 1095

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:TW

State or Province Name (full name) [Some-State]:TAIPEI

Locality Name (eg, city) []:TAIPEI

Organization Name (eg, company) [Internet Widgits Pty Ltd]:MOXA

Organizational Unit Name (eg, section) []:DAC

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

7. Use dhparam.pem to generate DHParameterFile.

[moxa@ioPAC8600 tls]# sudo openssl dhparam -out dhparam.pem 2048

Generating DH parameters, 2048 bit long safe prime, generator 2

This is going to take a long time

...++*++*

8. Start monkey service.

[moxa@ioPAC8600 ~]# sudo systemctl start monkey.service

LOG
The following example shows the log of sshd.service.

[moxa@ioPAC8600 ~]# sudo journalctl -u sshd.service

-- Logs begin at Fri 2000-01-14 21:34:32 UTC, end at Fri 2000-01-14 21:35:42 UTC

. --

Jan 14 21:34:38 ioPAC8600 systemd[1]: Starting OpenSSH server daemon...

Jan 14 21:34:48 ioPAC8600 ssh-keygen[271]: ssh-keygen: generating new host keys:

 RSA DSA ECDSA ED25519

Jan 14 21:34:48 ioPAC8600 systemd[1]: Started OpenSSH server daemon.

Jan 14 21:34:48 ioPAC8600 sshd[324]: Server listening on 0.0.0.0 port 22.

Additional information is available here:

https://www.freedesktop.org/software/systemd/man/journalctl.html

https://www.freedesktop.org/software/systemd/man/journalctl.html

4
4. Controller Communications

In this chapter, we explain how to configure the ioPAC controller various communication functions.

The following topics are covered in this chapter:

 Internet Configuration

 Modbus TCP Master and Slave

 DNS

 FTP

 Telnet

 SSH

 Iptables

 NAT (SNAT)

 Port Forwarding (DNAT)

 PPPoE

 NFS (Network File System) Client

 Sending Mail

 OpenVPN

 IPSec VPN

 NTP Server/Client

 Port Trunking

 DDNS

 opkg

ioPAC 8600 CPU30 C Version Controller Communications

 4-2

Internet Configuration

Modbus TCP Master and Slave
Since the Modbus TCP communication protocol is used for many industrial applications, the ioPAC
Programmable Controller has built-in Modbus TCP master and slave functions. For detailed information, refer to
the following Moxa document:
C/C++ Sample Code Programming Guide for ioPAC Programmable Controllers.

DNS
The ioPAC controllers can be configured as a DNS client but not as a DNS server.

1. Deactivate eth0.

[moxa@ioPAC8600 ~]# sudo nmcli c down eth0

Connection 'eth0' successfully deactivated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/1)

2. Configure eth0 to request an IP address dynamically.

[moxa@ioPAC8600 ~]# sudo nmcli c modify eth0 ipv4.dns "8.8.8.8 8.8.4.4"

3. Active eth0.

[moxa@ioPAC8600 ~]# sudo nmcli c up eth0

Connection successfully activated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/2)

FTP
In this section, we explain how to use the three FTP commands supported by the ioPAC: ncftp, tftp, and sftp.
In the following example, 192.168.127.1 is the IP address of the FTP server.

ncftp

Connect to an FTP server.

[moxa@ioPAC8600 ~]# ncftp -u <ftp username> -p <ftp password> 192.168.127.1

Download a remote file from an FTP server.

[moxa@ioPAC8600 ~]# ncftpget -u <ftp username> -p <ftp password> 192.168.127.1

<local-directory> <Remote FILE>

Upload a local file to an FTP server.

[moxa@ioPAC8600 ~]# ncftpput -u <ftp username> -p <ftp password> 192.168.127.1

<remote-directory> <Local FILE>

tftp

Download a remote file from an FTP server.

[moxa@ioPAC8600 ~]# tftp -gr <Remote FILE> 192.168.127.1

Upload a local file to an FTP server.

[moxa@ioPAC8600 ~]# tftp -pl <Local FILE> 192.168.127.1

ioPAC 8600 CPU30 C Version Controller Communications

 4-3

sftp

Connect to an FTP server.

[moxa@ioPAC8600 ~]# sftp <ftp username>@192.168.127.1

Telnet
The ioPAC 8600-CPU30 has a built-in telnet server (telnetd) and client (telnet) service. You can use the service
to connect other hosts to the ioPAC 8600-CPU30. Since the telnet server is disabled by default, you must enable
the daemon before using it.

Enable the telnet server.

[moxa@ioPAC8600 ~]# sudo systemctl start telnetd.service

Connect to otherhost from the ioPAC 8600-CPU30.

[moxa@ioPAC8600 ~]# telnet 192.168.127.1

SSH
The ioPAC 8600-CPU30 has a built-in SSH server (sshd) and client (ssh) service. You can use the service to
connect the ioPAC 8600 CPU30 to otherhost.

Enable the SSH server.

[moxa@ioPAC8600 ~]# sudo systemctl start sshd.service

Connect to otherhost from the ioPAC 8600-CPU30.

[moxa@ioPAC8600 ~]# ssh <ssh username>@192.168.127.1

Iptables
The iptables command is an administrative tool for setting up, maintaining, and inspecting the Linux kernel’s IP
packet filter rule tables. Several different tables are defined, with each table containing built-in chains and
user-defined chains.

Each chain is a list of rules that apply to a certain type of packet, and each rule specifies what to do with a
matching packet. A rule (such as a jump to a user-defined chain in the same table) is called a “target.”

ioPAC 8600 CPU30 C Version Controller Communications

 4-4

NAT (SNAT)
The NAT (Network Address Translation) protocol translates IP addresses used on one network to different IP
addresses used on another network. One network is designated the inside network and the other is the outside
network. Typically, ioPAC programmable controllers are connected to several devices on a network. They map
local inside network addresses to one or more global outside IP addresses, and un-map global IP addresses on
incoming packets back into local IP addresses. Take the following step to configure SNAT.

Step 1: Enable IP Forwarding.

[moxa@ioPAC8600 ~]# sudo sysctl -w net.ipv4.ip_forward=1

net.ipv4.ip_forward = 1

Step 2: Config SNAT to NAT table.

[moxa@ioPAC8600 ~]# sudo iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source

192.168.127.254

ioPAC 8600 CPU30 C Version Controller Communications

 4-5

Port Forwarding (DNAT)
Port forwarding allows remote computers (e.g., computers on the Internet) to connect to a specific computer
or service within a private local-area network (LAN). The following is an FTP port forwarding example.

Step 1: Enable IP Forwarding.

[moxa@ioPAC8600 ~]# sudo sysctl -w net.ipv4.ip_forward=1

net.ipv4.ip_forward = 1

Step 2: Config DNAT to NAT table.

[moxa@ioPAC8600 ~]# sudo iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 99 -j

DNAT --to-destination 192.168.126.100:21

PPPoE
1. Connect the ioPAC Programmable Controller LAN port to an ADSL modem with a cross-over cable, hub, or

switch.

2. Log in to the ioPAC Programmable Controller as the root user.

3. Deactivate eth0.

[moxa@ioPAC8600 ~]# sudo nmcli c down eth0

Connection 'eth0' successfully deactivated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/1)

4. Add a pppoe connection with ifname (eth0) and ISP account for NetworkManager.

[moxa@ioPAC8600 ~]# sudo nmcli c add type pppoe ifname eth0 username <PPPoE username> password
<PPPoE password>

ioPAC 8600 CPU30 C Version Controller Communications

 4-6

5. Check the connection name (pppoe-eth0) of the pppoe added in the previous step.

[moxa@ioPAC8600 ~]# sudo nmcli c show

NAME UUID TYPE DEVICE

pppoe-eth0 57c602de-7f2d-43c7-b51d-fd674cb0a5a5 pppoe --

eth0 7286c513-4600-47e1-838f-9061b2f95e47 802-3-ethernet eth0

eth1 8eac9c2f-4184-4bf6-9161-057acc3b3494 802-3-ethernet --

6. Activate pppoe-eth0.

[moxa@ioPAC8600 ~]# sudo nmcli c up pppoe-eth0

Connection successfully activated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/2)

NFS (Network File System) Client
The Network File System (NFS) is used to mount a disk partition on a remote machine, as if it were on a local
hard drive, allowing fast, seamless sharing of files across a network. NFS allows users to develop applications
for the ioPAC Programmable Controllers, without worrying about the amount of disk space that will be available.
The ioPAC Programmable Controller supports NFS protocol for clients.

NOTE More information about NFS is available at:
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

Setting Up the ioPAC Programmable Controller as an NFS Client

Use the following procedure to mount a remote NFS Server.

• ioPAC8600: 192.168.127.254

• NFS_Server: 192.168.127.1

• make sure ioPAC8600 and NFS_Server can connect to each other over the network.

1. Find the NFS Server’s shared directory.

[moxa@ioPAC8600 ~]# showmount -e 192.168.127.1

Export list for 192.168.127.1:

/home/nfs *

2. Establish a mount point on the NFS client site.

[moxa@ioPAC8600 ~]# mkdir /root/nfs

3. Mount the remote directory to a local directory.

[moxa@ioPAC8600 ~]# sudo mount -t nfs 192.168.127.1:/home/nfs /root/nfs

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

ioPAC 8600 CPU30 C Version Controller Communications

 4-7

Sending Mail
msmtp is a minimal SMTP client that takes an email message body and passes it on to an SMTP server. It is
suitable for applications that use email to send alert messages or important logs to a specific user.

NOTE More information about smtpclient is available at:
https://wiki.archlinux.org/index.php/Msmtp

To send an email message, use the smtpclient utility, which uses the SMTP protocol. Type msmtp --help to
see the help message.

Example:
msmtp --host=hostname --read-envelope-from address_receiver@moxa.com

OpenVPN
OpenVPN provides two types of tunnels for users to implement VPNS: Routed IP Tunnels and Bridged
Ethernet Tunnels.

An Ethernet bridge is used to connect different Ethernet networks together. The Ethernets are bundled into one
bigger, logical Ethernet. Each Ethernet corresponds to one physical interface (or port) that is connected to the
bridge. On each OpenVPN machine, you should generate a working directory, such as /etc/openvpn, where
script files and key files reside. Once established, all operations will be performed in that directory.

Example: Configure OpenVPN as shown in the following diagram.

Host A (B) represents one of the machines that belongs to OpenVPN A (B). The two remote subnets are
configured for a different range of IP addresses. When this setup is moved to a public network, the external
interfaces of the OpenVPN machines should be configured for static IPs, or connected to another device (such
as a firewall or DSL box) first.

Routed VPN Tunnels

1. Generate a static secret key, secrouter.key, on OpenVPN A.

[moxa@ioPAC8600 ~]$ sudo openvpn --genkey --secret /etc/openvpn/secrouter.key

2. Copy secrouter.key from OpenVPN A to OpenVPN B over a pre-existing secure channel.

[moxa@ioPAC8600 ~]$ sudo scp /etc/openvpn/secrouter.key moxa@192.168.8.174:~
moxa@192.168.8.174's password:

https://wiki.archlinux.org/index.php/Msmtp

ioPAC 8600 CPU30 C Version Controller Communications

 4-8

3. Log in to OpenVPN B and then copy secrouter.key to the directory /etc/openvpn/.

[moxa@ioPAC8600 ~]$ sudo cp secrouter.key /etc/openvpn/
[moxa@ioPAC8600 ~]$ rm -f secrouter.key

4. Modify the configuration file tun.conf.

[moxa@ioPAC8600 ~]$ sudo vi /etc/openvpn/tun.conf

remote 192.168.8.174
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5

tun-mtu 1500
tun-mtu-extra 64
ping 40

script-security 3 system
ifconfig 192.168.2.173 192.168.4.174
up /etc/openvpn/tun.sh

#comp-lzo

5. Modify the executable script file tun.sh.

[moxa@ioPAC8600 ~]$ sudo vi /etc/openvpn/tun.sh

#!/bin/sh
route add -net 192.168.4.0 netmask 255.255.255.0 gw $5

6. Execute the following script to set up a routed VPN tunnel environment.

[moxa@ioPAC8600 ~]$ sudo /etc/openvpn/openvpn-bridge env
Setup openvpn environment.
load modules tun ok.
enable ip forwarding ok.

7. Start OpenVPN with tun.conf.

[moxa@ioPAC8600 ~]$ sudo openvpn /etc/openvpn/tun.conf &

ioPAC 8600 CPU30 C Version Controller Communications

 4-9

Bridged Ethernet Tunnels

1. Generate a static secret key, secrouter.key, on OpenVPN A.

[moxa@ioPAC8600 ~]$ sudo openvpn --genkey --secret /etc/openvpn/secrouter.key

2. Copy secrouter.key from OpenVPN A to OpenVPN B over a pre-existing secure channel.

[moxa@ioPAC8600 ~]$ sudo scp /etc/openvpn/secrouter.key moxa@192.168.8.174:~
moxa@192.168.8.174's password:

3. Log in to OpenVPN B and then copy secrouter.key to the directory /etc/openvpn/.

[moxa@ioPAC8600 ~]$ sudo cp secrouter.key /etc/openvpn/
[moxa@ioPAC8600 ~]$ rm -f secrouter.key

4. Modify the configuration file tap0-br.conf.

[moxa@ioPAC8600 ~]$ sudo vi /etc/openvpn/tun.conf

[moxa@ioPAC8600 ~]$ sudo vi /etc/openvpn/tap0-br.conf

remote 192.168.8.174
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5

tun-mtu 1500
tun-mtu-extra 64
ping 40
ping-restart 120

script-security 3 system
up /etc/openvpn/tap0-br.sh

#comp-lzo

5. Modify the executable script file tap0-br.sh.

[moxa@ioPAC8600 ~]$ sudo vi /etc/openvpn/tap0-br.sh

#!/bin/sh
route add -net 192.168.4.0 netmask 255.255.255.0 dev br0

6. Execute the following script to set up a bridge Ethernet tunnel environment.

[moxa@ioPAC8600 ~]$ sudo /etc/openvpn/openvpn-bridge start
Setup openvpn bridge.
Setup openvpn environment.
load modules tun ok.
enable ip forwarding ok.
Thu Jan 20 16:46:30 2000 TUN/TAP device tap0 opened
Thu Jan 20 16:46:30 2000 Persist state set to: ON

7. Start OpenVPN with tap0-br.conf.

[moxa@ioPAC8600 ~]$ sudo openvpn /etc/openvpn/tap0-br.conf &

ioPAC 8600 CPU30 C Version Controller Communications

 4-10

IPSec VPN
In this section, we explain how to use IPsec, another widely used VPN protocol.

1. Enable IP Forwarding.

[moxa@ioPAC8600 ~]# sudo sysctl -w net.ipv4.ip_forward=1

net.ipv4.ip_forward = 1

2. Modify the configuration file ipsec.conf.

[moxa@ioPAC8600 ~]# sudo vi /etc/ipsec.conf

version 2.0

config setup

 dumpdir=/var/run/pluto/

 nat_traversal=yes

 oe=off

 protostack=auto

 #plutostderrlog=/dev/null

conn ipsec

 authby=secret

 left=192.168.8.173

 leftsourceip=192.168.2.173

 leftnexthop=0.0.0.0

 leftsubnet=192.168.2.0/24

 right=192.168.8.174

 rightsubnet=192.168.4.0/24

 type=tunnel

 auth=esp

 esp=3des-sha1

 rekeymargin=9m

 rekeyfuzz=100%

 keyingtries=%forever

 keyexchange=ike

 ikelifetime=1h

 keylife=480m

 ike=3des-sha1-modp1024

 auto=start

 pfs=no

 dpddelay=30

 dpdtimeout=120

 dpdaction=restart

3. Replace the local (192.168.8.173) and remote (192.168.8.174) IP addresses with the correct addresses for
your location. The pre-shared key will be supplied by the VPN provider and will need to be placed in this file
in cleartext form.

[moxa@ioPAC8600 ~]# sudo vi /etc/ipsec.secrets

192.168.8.173 192.168.8.174 : PSK "your_pre_shared_key"

4. Start ipsec.

[moxa@ioPAC8600 ~]# sudo ipsec setup start

ioPAC 8600 CPU30 C Version Controller Communications

 4-11

NTP Server/Client
Refer to the System Time Setting section in Chapter 3 for more information.

Port Trunking
Port Trunking is used to combine two network connections, connected to two different ports on the ioPAC, for
redundancy or increased throughput.

1. Deactivate eth0 and eth1.

[moxa@ioPAC8600 ~]# sudo nmcli c down eth0

Connection 'eth0' successfully deactivated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/1)

[moxa@ioPAC8600 ~]# sudo nmcli c down eth1

Connection 'eth1' successfully deactivated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/2)

2. Add a bond connection with ifname(bond0) and bonding mode for NetworkManager.

[moxa@ioPAC8600 ~]# sudo nmcli c add type bond ifname bond0 mode active-backup

Connection 'bond-bond0' (9edd06fe-575d-42e0-94d7-e183ab8559cd) successfully

added.

3. Add two bond-slave connections with ifname(eth0 and eth1) for the master bond0 added in the previous
step.

[moxa@ioPAC8600 ~]# sudo nmcli c add type bond-slave ifname eth0 master bond0

Connection 'bond-slave-eth0' (3a13902c-a5c4-4867-a27c-f2fa0b79898d) successfully

added.

[moxa@ioPAC8600 ~]# sudo nmcli c add type bond-slave ifname eth1 master bond0

Connection 'bond-slave-eth1' (067120e7-8828-40d9-8f0c-f494d54de862) successfully

added.

4. Activate bond-slave-eth0 and bond-slave-eth1.

[moxa@ioPAC8600 ~]# sudo nmcli c up bond-slave-eth0

Connection successfully activated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/6)

[moxa@ioPAC8600 ~]# sudo nmcli c up bond-slave-eth1

Connection successfully activated (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/7)

5. Activate port trunking.

[moxa@ioPAC8600 ~]# sudo nmcli c up bond-bond0

Connection successfully activated (master waiting for slaves) (D-Bus active path:

/org/freedesktop/NetworkManager/ActiveConnection/8)

ioPAC 8600 CPU30 C Version Controller Communications

 4-12

DDNS
The ioPAC CPU30 can be connected by DDNS service.

1. Go to no-ip.com to sign up and apply for a Dynamic DNS.

2. Modify inadyn.conf for NO-IP.

[moxa@ioPAC8600 ~]# sudo vi /etc/inadyn.conf

Basic configuration file for inadyn

/etc/inadyn.conf

pidfile /var/run/inadyn.pid

update_period_sec 600 # Check for a new IP every 600 seconds

username test # replace 'test' with your username

password test # replace 'test' with your password

dyndns_system default@no-ip.com # replace w/ your provider

alias ioPAC8600.ddns.net

replace 'test.homeip.net' with yourdomainname for actual (non-test) use

3. Start the inadyn service.

[root@ioPAC8600 ~]# nmcli c up eth0

[moxa@ioPAC8600 ~]# sudo systemctl start inadyn.service

opkg
opkg (Open PacKaGe) is a lightweight package management system based on opkg. You can use it to install the
ipk from a third party. Before using it, use the following command to place the ipk in the correct directory.

[moxa@ioPAC8600 ~]# ls -hl

total 8

-rw-r--r-- 1 moxa moxa 5.0K Jan 16 19:22 now_time_1.0.0_armv7.ipk

https://www.noip.com/

ioPAC 8600 CPU30 C Version Controller Communications

 4-13

Install

[moxa@ioPAC8600 ~]# sudo opkg install now_time_1.0.0_armv7.ipk

Installing now_time (1.0.0) to root...

Configuring now_time.

Remove

1. Check which package was installed.

[moxa@ioPAC8600 ~]# sudo opkg list-installed | grep now_time

now_time - 1.0.0

2. Remove the package.

[moxa@ioPAC8600 ~]# sudo opkg remove now_time

Removing package now_time from root...

5
5. Controller Data Acquisition

In this chapter, we explain how to use the ioPAC Programmable Controller to implement data acquisition
applications.

The following topics are covered in this chapter:

 I/O Data Access

 Data Backup Memory

 Millisecond Timestamp

 MX-AOPC UA Server

ioPAC 8600 CPU30 C Version Controller Data Acquisition

 5-2

I/O Data Access
ioPAC Programmable Controllers support many kinds of I/O modules that collect physical data from sensors.
You can use 85/86M series I/O modules for ioPAC 8600-CPU30 series products.

Moxa provides C/C++ programming tools for users to develop their own projects for data acquisition. The
C/C++ library and APIs can be found under C/C++ Sample Code Programming Guide for ioPAC
Programmable Controllers  io, io_event, and misc.

Data Backup Memory
ioPAC Programmable Controllers support data backup memory, which is important for applications that require
any kind of data backup in the event of a power failure. Use the following APIs to access the memory. For more
detailed information and examples, see the Moxa document C/C++ Sample Code Programming Guide for
ioPAC Programmable Controllers  misc.

Millisecond Timestamp
A timestamp is a sequence of characters or encoded information identifying when a certain event occurred,
usually expressing the date and time of day and sometimes accurate to a small fraction of a second. The ioPAC
85M-1602-T and 85M-3801/11-T modules have a dual CPU architecture, which means that each I/O module
has its own CPU, which can easily record events in milliseconds. Using this function enables the ioPAC to collect
data more accurately by providing millisecond timestamps for event and historical data analysis. Thanks to the
millisecond timestamp function, operators can distinguish the sequence of data and know how to handle this
event accordingly.

For more detailed information and examples, refer to C/C++ Sample Code Programming Guide for ioPAC
Programmable Controllers  IO.

MX-AOPC UA Server
MX-AOPC UA Server is a software package provided by Moxa that operates as an OPC driver for an HMI or
SCADA system. It can be used to establish a seamless connection from Moxa’s ioPAC/ioLogik series products to
SCADA systems. MX-AOPC UA Server meets the latest standard of OPC UA, which allows connections to various
kinds of devices and OPC client machines.

Moxa has pioneered the concept of “active type” OPC software in the automation industry. The patented Active
OPC Server supports a non-polling architecture alongside the standard OPC protocol, giving users the
alternative of active, push-based communication from Moxa’s controllers and remote I/O devices. This
adaptation of “push” technology means that I/O status will be updated at the MX-AOPC UA Server only when
there is an I/O status change, a pre-configured interval is reached, or when a request is issued by a user. This
application of push technology cuts metadata overhead, resulting in faster I/O response times and more
accurate data collection than traditional pull-based architectures. With Moxa’s “active technology” advantage,
users can now instantly receive alarms and real-time updates.

Use the AOPC APIs to configure and access the AOPC tag information. For detailed information and examples,
refer to C/C++ Sample Code Programming Guide for ioPAC Programmable Controllers  aopc.

6
6. Controller Programming

In this chapter, we describe how to install a toolchain on the host computer used to develop your applications.
Cross-platform development and debugging are also discussed.

The following topics are covered in this chapter:

 Programming Guide

 Memory Usage

 Using C/C++

 Linux Toolchain

 GDB

 Library and APIs

ioPAC 8600 CPU30 C Version Controller Programming

 6-2

Programming Guide

Memory Usage
Use the df and free commands to check memory information.

[moxa@ioPAC8600 ~]$ df -Th

Filesystem Type Size Used Available Use% Mounted on

none devtmpfs 234.2M 0 234.2M 0% /dev

overlay overlay 1.9G 25.9M 1.8G 1% /

tmpfs tmpfs 246.7M 24.0K 246.6M 0% /dev/shm

tmpfs tmpfs 246.7M 568.0K 246.1M 0% /run

tmpfs tmpfs 246.7M 0 246.7M 0% /sys/fs/cgroup

tmpfs tmpfs 246.7M 0 246.7M 0% /tmp

/dev/mtdblock1 vfat 501.0K 512 500.5K 0% /var/retain

[moxa@ioPAC8600 ~]$ free -ht

 total used free shared buff/cache available

Mem: 493M 11M 450M 592K 31M 462M

Swap: 0B 0B 0B

Total: 493M 11M 450M

If the user file system is incorrect, the kernel will change the root file system to the kernel and use the default
Moxa file system. To finish the boot process, run the init program.

NOTE 1. The user file system is a complete file system. You can create and delete directories and files (including
source code and executable files) as needed.

2. You can create the user file system on the host PC or the target platform and copy it to the ioPAC
Programmable Controller.

3. Continuously writing data to flash is not recommended, since doing so will decrease the flash’s lifespan.

Using C/C++

Linux Toolchain
The Linux toolchain contains a suite of cross compilers and other tools, as well as the libraries and header files
that are needed to compile applications. These toolchain components must be installed on a host computer (PC)
running Linux. We have confirmed that the following Linux distributions can be used to install the toolchain.

• Arch linux Rolling release (2017-02-01)

• Ubuntu 14.04

ioPAC 8600 CPU30 C Version Controller Programming

 6-3

Installing the Linux Toolchain

Refer to the Installing the Toolchain on the PC section in Chapter 2.

Compiling Applications

To compile a simple C application, use the cross compiler instead of the regular compiler:

#arm-linux-gnueaibhf –o example –Wall –g –O2 example.c
#arm-linux-gnueaibhf –s example
#arm-linux-gnueaibhf -ggdb –o example-debug example.c

Most of the cross compiler tools are the same as their native compiler counterparts, but have an additional
prefix that specifies the target system. In the case of the ioPAC 8600-CPU30, the prefix is
arm-linux-gnueaibhf.

For example, the native C compiler is gcc and the cross C compiler for ARM in the ioPAC is arm-linux-gcc.

Moxa provides cross compiler tools for the following native compilers. When using these commands, simply add
the arm-linux-gnueaibhf prefix to the command.

ar Manages archives (static libraries)

as Assembler

c++, g++ C++ compiler

cpp C preprocessor

gcc C compiler

gdb Debugger

ld Linker

nm Lists symbols from object files

objcopy Copies and translates object files

objdump Displays information about object files

ranlib Generates indexes to archives (static libraries)

readelf Displays information about ELF files

size Lists object file section sizes

strings Prints strings of printable characters from files (usually object files)

strip Removes symbols and sections from object files (usually debugging information)

GDB
The toolchain also provides a debugging mechanism to help you develop your program. Take the following
steps to use GDB for debugging.

1. Place the executable file and source code in the same directory.

[moxa@ioPAC8600 ~]# ls –hl

total 16

-rwxr-xr-x 1 moxa moxa 10.0K Jan 4 06:46 test

-rw-r--r-- 1 moxa moxa 95 Jan 4 06:45 test.c

ioPAC 8600 CPU30 C Version Controller Programming

 6-4

2. Debug the program.

[moxa@ioPAC8600 ~]# gdb -q test

Reading symbols from test...done.

(gdb) l

1 int main()

2 {

3 int a, b, c;

4 a=5;

5 b=10;

6 c=15;

7 c+=a;

8 c-=b;

9 return 0;

10 }

(gdb) b 7

Breakpoint 1 at 0x103b2: file test.c, line 7.

(gdb) r

Starting program: /root/test

Breakpoint 1, main () at test.c:7

7 c+=a;

(gdb) display c

1: c = 15

(gdb) n

8 c-=b;

1: c = 20

(gdb) n

9 return 0;

1: c = 10

(gdb) c

Continuing.

[Inferior 1 (process 474) exited normally]

(gdb) q

Library and APIs
For detailed information about the library and APIs, see C/C++ Sample Code Programming Guide for
ioPAC Programmable Controllers.

A
A. System Commands

Special Moxa Utilities
Command Description
kversion Show kernel version

setdef Reset to factory defaults and reboot

upgradehfm Firmware upgrade utility

To view the supported system commands, use the help or busybox --help commands, as illustrated in the
following examples:

ioPAC 8600 CPU30 C Version System Commands

 A-2

help:

[moxa@ioPAC8600 ~]$ help

GNU bash, version 4.3.42(1)-release (arm-buildroot-linux-gnueabihf)

These shell commands are defined internally. Type `help' to see this list.

Type `help name' to find out more about the function `name'.

Use `info bash' to find out more about the shell in general.

Use `man -k' or `info' to find out more about commands not in this list.

A star (*) next to a name means that the command is disabled.

 job_spec [&] history [-c] [-d offset] [n] or hist>

 ((expression)) if COMMANDS; then COMMANDS; [elif C>

 . filename [arguments] jobs [-lnprs] [jobspec ...] or jobs >

 : kill [-s sigspec | -n signum | -sigs>

 [arg...] let arg [arg ...]

 [[expression]] local [option] name[=value] ...

 alias [-p] [name[=value] ...] logout [n]

 bg [job_spec ...] mapfile [-n count] [-O origin] [-s c>

 bind [-lpsvPSVX] [-m keymap] [-f file> popd [-n] [+N | -N]

 break [n] printf [-v var] format [arguments]

 builtin [shell-builtin [arg ...]] pushd [-n] [+N | -N | dir]

 caller [expr] pwd [-LP]

 case WORD in [PATTERN [| PATTERN]...)> read [-ers] [-a array] [-d delim] [->

 cd [-L|[-P [-e]] [-@]] [dir] readarray [-n count] [-O origin] [-s>

 command [-pVv] command [arg ...] readonly [-aAf] [name[=value] ...] o>

 compgen [-abcdefgjksuv] [-o option] > return [n]

 complete [-abcdefgjksuv] [-pr] [-DE] > select NAME [in WORDS ... ;] do COMM>

 compopt [-o|+o option] [-DE] [name ..> set [-abefhkmnptuvxBCHP] [-o option->

 continue [n] shift [n]

 coproc [NAME] command [redirections] shopt [-pqsu] [-o] [optname ...]

 declare [-aAfFgilnrtux] [-p] [name[=v> source filename [arguments]

 dirs [-clpv] [+N] [-N] suspend [-f]

 disown [-h] [-ar] [jobspec ...] test [expr]

 echo [-neE] [arg ...] time [-p] pipeline

 enable [-a] [-dnps] [-f filename] [na> times

 eval [arg ...] trap [-lp] [[arg] signal_spec ...]

 exec [-cl] [-a name] [command [argume> true

 exit [n] type [-afptP] name [name ...]

 export [-fn] [name[=value] ...] or ex> typeset [-aAfFgilrtux] [-p] name[=va>

 false ulimit [-SHabcdefilmnpqrstuvxT] [lim>

 fc [-e ename] [-lnr] [first] [last] o> umask [-p] [-S] [mode]

 fg [job_spec] unalias [-a] name [name ...]

 for NAME [in WORDS ...] ; do COMMAND> unset [-f] [-v] [-n] [name ...]

 for ((exp1; exp2; exp3)); do COMMAN> until COMMANDS; do COMMANDS; done

 function name { COMMANDS ; } or name > variables - Names and meanings of so>

 getopts optstring name [arg] wait [-n] [id ...]

 hash [-lr] [-p pathname] [-dt] [name > while COMMANDS; do COMMANDS; done

 help [-dms] [pattern ...] { COMMANDS ; }

ioPAC 8600 CPU30 C Version System Commands

 A-3

busybox --help:

[moxa@ioPAC8600 ~]$ busybox --help

BusyBox v1.24.1 (2017-07-03 18:15:00 CST) multi-call binary.

BusyBox is copyrighted by many authors between 1998-2015.

Licensed under GPLv2. See source distribution for detailed

copyright notices.

Usage: busybox [function [arguments]...]

 or: busybox --list[-full]

 or: busybox --install [-s] [DIR]

 or: function [arguments]...

 BusyBox is a multi-call binary that combines many common Unix

 utilities into a single executable. Most people will create a

 link to busybox for each function they wish to use and BusyBox

 will act like whatever it was invoked as.

Currently defined functions:

 [, [[, addgroup, adduser, ar, arp, arping, ash, awk, basename, blkid,

 bunzip2, bzcat, cat, catv, chattr, chgrp, chmod, chown, chpasswd,

 chroot, chrt, chvt, cksum, clear, cmp, cp, cpio, crond, crontab, cut,

 date, dc, dd, deallocvt, delgroup, deluser, devmem, df, diff, dirname,

 dmesg, dnsd, dnsdomainname, dos2unix, dpkg, dpkg-deb, du, dumpkmap,

 echo, egrep, eject, env, ether-wake, expr, false, fbset, fdflush,

 fdformat, fdisk, fgrep, find, flock, fold, free, freeramdisk, fsck,

 fstrim, fuser, getopt, getty, grep, gunzip, gzip, halt, hdparm, head,

 hexdump, hostid, hostname, hwclock, i2cdetect, i2cdump, i2cget, i2cset,

 id, ifconfig, ifdown, ifup, inetd, init, insmod, install, ip, ipaddr,

 ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kill, killall,

 killall5, last, less, linux32, linux64, linuxrc, ln, loadfont,

 loadkmap, logger, login, logname, losetup, ls, lsattr, lsmod, lsof,

 lspci, lsusb, lzcat, lzma, makedevs, md5sum, mdev, mesg, microcom,

 mkdir, mkfifo, mknod, mkswap, mktemp, modprobe, more, mount,

 mountpoint, mt, mv, nameif, netstat, nice, nohup, nslookup, od, openvt,

 passwd, patch, pidof, ping, pipe_progress, pivot_root, poweroff,

 printenv, printf, ps, pwd, rdate, readlink, readprofile, realpath,

 reboot, renice, reset, resize, rm, rmdir, rmmod, route, run-parts,

 runlevel, sed, seq, setarch, setconsole, setkeycodes, setlogcons,

 setserial, setsid, sh, sha1sum, sha256sum, sha3sum, sha512sum, sleep,

 sort, start-stop-daemon, strings, stty, su, sulogin, swapoff, swapon,

 switch_root, sync, sysctl, tail, tar, tee, telnet, telnetd, test, tftp,

 time, top, touch, tr, traceroute, true, truncate, tty, udhcpc, uevent,

 umount, uname, uniq, unix2dos, unlink, unlzma, unxz, unzip, uptime,

 usleep, uudecode, uuencode, vconfig, vi, vlock, watch, watchdog, wc,

 wget, which, who, whoami, xargs, xz, xzcat, yes, zcat

	1. Introduction
	Overview
	Scope
	Related Documents
	Supported Products

	Software Architecture
	Software Package

	2. Getting Started
	Developing the First Program
	Hardware Requirements
	Development Procedure

	Configuring the Ethernet Interface
	Modifying Network Settings with the Serial Console
	Static IP address:
	Dynamic IP Address:

	Modifying Network Settings over the Network
	Static IP address:

	Connecting an ioPAC Controller to a Linux PC
	Installing the Toolchain on the PC
	Configuring Cross Compiler and glibc Environment Variables
	Developing Code and Compiling a Program
	Upload and Run the Program
	Systemctl Command

	3. Controller Management
	System Information
	Firmware Upgrade and Default Settings
	Upgrading the Firmware
	Loading Factory Defaults
	ioPAC 8600-CPU30 Series

	Enabling and Disabling Daemons
	System Time Setting
	Setting the Time Manually
	Using NTP Client to update the Time
	Configuring the NTP Server

	Executing Scheduled Commands with Cron Daemon
	File System
	Example 1: Using e2fsprogs to format an SD card to ext4
	Example 2: Using dosfstools to format an SD card to ext4

	Web Server
	http
	https

	LOG

	4. Controller Communications
	Internet Configuration
	Modbus TCP Master and Slave
	DNS
	FTP
	ncftp
	tftp
	sftp

	Telnet
	SSH
	Iptables
	NAT (SNAT)
	Port Forwarding (DNAT)
	PPPoE
	NFS (Network File System) Client
	Setting Up the ioPAC Programmable Controller as an NFS Client

	Sending Mail
	Example:

	OpenVPN
	Routed VPN Tunnels
	Bridged Ethernet Tunnels

	IPSec VPN
	NTP Server/Client
	Port Trunking
	DDNS
	opkg
	Install
	Remove

	5. Controller Data Acquisition
	I/O Data Access
	Data Backup Memory
	Millisecond Timestamp
	MX-AOPC UA Server

	6. Controller Programming
	Programming Guide
	Memory Usage

	Using C/C++
	Linux Toolchain
	Installing the Linux Toolchain
	Compiling Applications

	GDB
	Library and APIs

	A. System Commands
	Special Moxa Utilities
	help:
	busybox --help:

