1A240/241 Linux User’s Manual

Sixth Edition, March 2015

www.moxa.com/product

MOXAN

© 2015 Moxa Inc. All rights reserved.
Reproduction without permission is prohibited.

http://www.moxa.com/product

1A240/241 Linux User’s Manual

The software described in this manual is furnished under a license agreement and may be used only in
accordance with the terms of that agreement.

Copyright Notice

Copyright © 2015 Moxa Inc.
All rights reserved.
Reproduction without permission is prohibited.

Trademarks

MOXA is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the
part of Moxa.

Moxa provides this document “as is,” without warranty of any kind, either expressed or implied, including, but
not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this
manual, or to the products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no
responsibility for its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the
publication.

Technical Support Contact Information
WWWw.moxa.com/support

Moxa Americas: Moxa China (Shanghai office):
Toll-free: 1-888-669-2872 Toll-free: 800-820-5036

Tel: +1-714-528-6777 Tel: +86-21-5258-9955
Fax: +1-714-528-6778 Fax: +86-10-6872-3958
Moxa Europe: Moxa Asia-Pacific:

Tel: +49-89-3 70 03 99-0 Tel: +886-2-8919-1230

Fax: +49-89-3 70 03 99-99 Fax: +886-2-8919-1231

http://www.moxa.com/support

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Table of Contents

INErOdUCHION ... 11
OVEIVIBW ...ttt ettt ettt b e sttt a et et b et e b e bt eb e st et et sb e eb e ebeeb e eat et ebe st e ebesaeebeeaeennenee 1-2
SOftWAre ATCHIEECTUTEc.vevitirtietieiceitet ettt ettt sttt et ettt s be st naens 1-2
Journaling Flash File System (JFFS2)......ccoccoiiviiriiiieieeee e 1-3
SOFtWAre PACKAZE ...evvevieiieiieieee ettt ees 1-4
Getting Started...........ccoooiiiiceccc e 21
Powering on the TA240/24 1ooouvieeieeeieeeeeet ettt ettt ettt e e be e aae e taeesaaeessseensneenes 2-2
Connecting the TA240/241 10 @ PCooiiiiiiieeee e 2-2
Serial CONSOLE.cueiiiiiiiitieeee ettt ettt sttt 2-2
TeINEt CONSOLE....couiiiiiiieiieiteet ettt ettt st e e e eae 2-3
SSH COMNSOLE ..ttt ettt ettt e ettt st st e b e beeteenteeas 2-4
Configuring the Ethernet INterfacecocoooiiiiiiiiiiii e 2-6
Modifying Network Settings with the Serial Console...........cocevceerieniniinieniienienen. 2-6
Modifying Network Settings over the Networkccccooceeviiiiiieniiniiiiiciceeee 2-7
Configuring the WLAN via the PCMCIA INterfacec.ccooeevereiiienienieniieicceeeseeseeeen 2-7
TEEESD2.TTZ ittt ettt ettt a ettt be et b e eneeneeneenean 2-7
SD Socket and USB for Storage EXpansion...........ccceieeriireiieiieiienienceieeie e 2-12
Test Program—Developing Hello.C.......c.oouiiiiiiiiiiiiiic e 2-12
Installing the Tool Chain (LINUX)ccooeerieriiieiiinieneeeee e e 2-13
Checking the Flash Memory Space.......cccceeiiiiiiiiiinienieieeeeeeee e 2-13
Compiling HEllo.C .coviiiiiiieiiee e e e 2-13
Uploading and Running the “Hello” Program............ccccoeoeeniiniinciiiiinenieceee 2-14
Developing Your First APPIICAtIONcueeeiieriiierieeiieerieereeeieeeiee e eieeeieeseeeeseesebeeensee s 2-14
Testing ENVITONIMENEccuviiiiiieiiieiiiecie ettt sve e sveeseaeesaeensbeessaeeseseessseennas 2-15
COMPIING tEPS2.Cuneiiieiieitee ettt ettt ettt b et saee s e 2-15
Uploading and Running the “tcps2-release” Program.........ccooceeveveiiiencencencenens 2-16
Testing Procedure SUMMATYccccvieiiieiiienieeniiesie et esee et e sveesreesveeseseessaeenenas 2-19
Managing Embedded LiNUXcuueeemmmemmmmmmmmmmnnnnnennnsssssas 31
System Version INformation...........ccueeciierieeriiieiie ettt sre e veesaaeessaeennees 3-2
System IMage BaACKUP.....cuvieciiiiiieeie ettt ettt e saae e e e saeessaeesssaeneas 3-2
Upgrading the FITMWATE........c.coovvieiiiiiiieie et eeeeiee e etaeeteesteeeaeesnbeeensee s 3-2
Loading Factory DefaultScccuieriieiiieiieeiieeie ettt st s 34
Enabling and Disabling DaGmONS........ccc.eevcveeriienieeriienieesieeseeesieeesteeeseessneessaeessnesssseessneenes 3-5
Setting the RUN-LEVELcocuoiiiiiiieeee e s 3-6
Adjusting the SYStEM TIMEcevuieiiiiiiieiieecie et eree et see et e e eeetaeeaeeetaeensaessaeesneenes 3-7
Setting the Time Manuallyc.cccovieiiieiiieiieeie et 3-7
INTP CHENL. ..ttt sttt et ettt b et seeesaeenae 3-8
Updating the Time Automatically.........cccecvueeiiierieiiiierie e 3-8
Cron—Daemon to Execute Scheduled Commandscooceeveriiiiiiniinienieieeieeeseeseeen 39
Managing CommuniCations ... 4-1
TEINEE / FTP ettt bbbttt ettt b e sttt 4-2
DN S ettt st b et a et b e bbbt h ettt st b e sae bt et e enee 4-2
WED ServICE—APACKEieiieiiiie ettt ettt et e b enb e enteenaensaenseenrean 4-3
Install PHP for APache Wb SEIVETccoevuieiiieiieieciesiiecttetee ettt nees 4-5
IPTABLES ...ttt ettt ettt bbbt bttt e be st b e st be et nee 4-7

Chapter 5

Chapter 6

Chapter 7
Appendix A

NAT EXAMPLE ...eeeniieiiieiieciieeiiesit ettt ettt ettt te e seessee st enseenseensesssesseenseensens 4-12

Enabling NAT at BOOTUDeeovieiieieiieciesiteie ettt ettt see e enne e 4-13
Dial-up SeIVICE—PPP.......ooiiiiieie e es 4-13
PPPOE ...ttt bbbttt sttt be et aeen 4-16
NFS (NetWork File SYSTEM)......eeeieriieiieiieiieie ettt ettt et eae e sneesseesseenseenne e 4-19
Setting up the TA240/241 as an NFS Clent........c.ccoveveereeiieecienieriee e 4-19
MLttt bbb b bbbt e a et b e bbbt bt et eneen 4-19
SNIMP ettt ettt ettt b et b et h ettt a e bbbttt nee 4-20
OPENVPN .ttt ettt e e bt e s bt e bt e s bt e eabeesabeesabeesabeesareens 4-28
Development Tool Chains...........ccovviiiiiiieeccii e e e 5-1
LANUX TOOI CHaII c.cuiiiiiiiieiieiee sttt ettt be st 5-2
Steps for Installing the Linux Tool Chain...........ccceceeierierienienieee e 5-2
Compilation for APPlICAtIONSecveruierieeieiierierte ettt sre e e ees 5-2
On-Line Debugging wWith GDBcccoeiiiiiiiiiiieieeeeeeeeeee e 5-3
On-Line Debugging with INSiht...........ccccviiiiiiirieieiieeeeeeeeee e 5-4
Programmer’s GUIdecccceceeeeiiiiiimrricesss s e e s sssesss s s e e e e s s s e e e e nmmnns 6-1
FIash MEMOTY MAPcciiiiiiiiiieeiiiesie ettt ettt e et e stae et eestaeessbe e saeensbeessaesnsseensnessseensnennes 6-2
DIEVICE AP ...ttt ettt sttt ettt eat e eh e bt e b enbean 6-2
RTC (Real TImME ClOCK) ..ievvieiiiiiiieiiieciitesie ettt et esive ettt seee et eesaeeestbeesaeetaeensnessseensneenns 6-2
BUZZET .ttt et ettt et e a e bt e b e b enbean 6-2
WDT (WatCh DOZ TIMET)eeeuvieiiieeiiieiiiieeieeiiteste et esete ettt eseveesebeesseeesbeesaeesaeensnessseensneanes 6-3
A RT ettt ettt ettt et s e et e e bt e aeeh e e ateae e s e e e eb e saeeb e entens e s e nseeteebeebeeneeneennens 6-7
DI/DIO ettt ettt a e bt a e a ettt ehe bt eaeea e et et e beete bt eaeeneeneeneenes 6-8
Make File EXQAMPIEcccviiiiiiiiiiiiicie ettt et aee et e s taeenbeesstaeenbaesnsaeenseenn 6-14
SOftWAre LOCK..... .. 71
System Commandsccooeeeecciiiicrirrrcrr e A-1
Linux normal command utility COIECHON.ccveriieriieiieieeie et A-1
Fle MANAZETeeevieeieeiieeiieeiteteete ettt et e st et ese e b e enbesnnesseesneeseenneenns A-1
EIOT ettt bbbttt e A-1
INCEWOTK ..ttt et st sttt et sa b e A-1
PIOCESS ...ttt s s A-2
ORET ettt ettt et et b e ettt et A-2

1

Introduction

Moxa IA240 and IA241 are RISC-based ready-to-run embedded computers. Available features
include four RS-232/422/485 serial ports, dual 10/100 Mbps Ethernet ports, PCMCIA, SD socket
for storage expansion and USB 2.0 host making 1A240/241 ideal for your embedded applications.

The following topics are covered in this chapter:
d Overview
O Software Architecture

» Journaling Flash File System (JFFS2)
» Software Package

1A240/241 Linux User’s Manual Introduction

Overview

The IA240/IA241 embedded computers, which are designed for industrial automation applications,
feature 4 RS-232/422/485 serial ports, dual Ethernet ports, 4 digital input channels, 4 digital output
channels, and a PCMCIA cardbus and SD socket. The computers come in a compact, IP30
protected, industrial-strength rugged chassis. The DIN-Rail vertical form factor makes it easy to
install the IA240/241 embedded computers in small cabinets. This space-saving feature also
facilitates easy wiring, and makes the IA240/241 the best choice as front-end embedded

controllers for industrial applications.

In addition to the standard models, the IA240/IA241 also come in wide temperature models. The
1A240-T and TA241-T have an operating temperature range of -40 to 75°C, and are appropriate for
harsh industrial automation environments. The industrial mechanism of the IA240/1A241 design
provides robust, reliable computing. Due to the RISC-based architecture, the IA240/1A241 will not
generate a lot of heat when in use. The high communication performance and fanless design make
the IA240/IA241 ideal for industrial automation environments.

The IA240/241 computers use a Moxa ART 192 Mhz RISC CPU. Unlike the X86 CPU, which
uses a CISC design, the RISC architecture and modern semiconductor technology provide these
embedded computers with a powerful computing engine and communication functions, but
without generating a lot of heat. A 16 MB NOR Flash ROM and a 64 MB SDRAM give you
enough memory to install your application software directly on the embedded computer. In
addition, dual LAN ports are built right into the RISC CPU. This network capability, in
combination with the ability to control serial devices, makes the IA240/241 ideal communication
platforms for data acquisition and industrial control applications.

The IA240/241°s pre-installed Linux operating system (OS) provides an open software operating
system for your software program development. Software written for desktop PCs can be easily
ported to the computer with a GNU cross compiler, without needing to modify the source code.
The OS, device drivers (e.g., serial and buzzer control), and your own applications, can all be
stored in the NOR Flash memory.

The IA240/241 Linux Series (referred to here as IA240/241, or as the target computer) consists of
two models: [A241-LX with CardBus, and IA240-LX (which doesn’t support CardBus). Both
models have exactly the same hardware and software features, except for the PCMCIA CardBus
provided by the IA241-LX.

Software Architecture

The Linux operating system that is pre-installed in the IA240/241 follows the standard Linux
architecture, making it easy to accept programs that follow the POSIX standard. Program porting
is done with the GNU Tool Chain provided by Moxa. In addition to Standard POSIX APIs, device
drivers for the USB storage, buzzer and Network controls, and UART are also included in the
Linux OS.

1A240/241 Linux User’s Manual Introduction

AP ' '
API '
/
s Protocol
Stack
Device
Driver

Microkernel

\- Hardware

The IA240/241°s built-in Flash ROM is partitioned into Boot Loader, Linux Kernel, Root File
System, and User directory partitions.

In order to prevent user applications from crashing the Root File System, the IA240/241 uses a
specially designed Root File System with Protected Configuration for emergency use. This
Root File System comes with serial and Ethernet communication capability for users to load the
Factory Default Image file. The user directory saves the user’s settings and application.

To improve system reliability, the IA240/241 has a built-in mechanism that prevents the system
from crashing. When the Linux kernel boots up, the kernel will mount the root file system for read
only, and then enable services and daemons. During this time, the kernel will start searching for
system configuration parameters via rc or inittab.

Normally, the kernel uses the Root File System to boot up the system. The Root File System is
protected, and cannot be changed by the user. This type of setup creates a “safe” zone.

For more information about the memory map and programming, refer to Chapter 5, Programmer’s
Guide.

Journaling Flash File System (JFFS2)

The Root File System and User directory in the flash memory is formatted with the Journaling
Flash File System (JFFS2). The formatting process places a compressed file system in the flash
memory. This operation is transparent to the user.

The Journaling Flash File System (JFFS2), which was developed by Axis Communications in
Sweden, puts a file system directly on the flash, instead of emulating a block device. It is designed
for use on flash-ROM chips and recognizes the special write requirements of a flash-ROM chip.
JFFS2 implements wear-leveling to extend the life of the flash disk, and stores the flash directory
structure in the RAM. A log-structured file system is maintained at all times. The system is always
consistent, even if it encounters crashes or improper power-downs, and does not require fsck (file
system check) on boot-up.

JFFS2 is the newest version of JFFS. It provides improved wear-leveling and garbage-collection
performance, improved RAM footprint and response to system-memory pressure, improved
concurrency and support for suspending flash erases, marking of bad sectors with continued use of
the remaining good sectors (enhancing the write-life of the devices), native data compression
inside the file system design, and support for hard links.

1-3

1A240/241 Linux User’s Manual Introduction

The key features of JFFS2 are:

® Targets the Flash ROM Directly

® Robustness

® Consistency across power failures

® No integrity scan (fsck) is required at boot time after normal or abnormal shutdown
Explicit wear leveling

® Transparent compression

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The file system
will remain in a consistent state across power failures and will always be mountable. However, if
the board is powered down during a write then the incomplete write will be rolled back on the next
boot, but writes that have already been completed will not be affected.

Additional information about JFFS2 is available at:
http://sources.redhat.com/jffs2/iffs2 . pdf
http://developer.axis.com/software/jffs/
http://www.linux-mtd.infradead.org/

Software Package

Boot Loader Moxa private (V1.2)

Kernel Linux 2.6.9

Protocol Stack ARP, PPP, CHAP, PAP, IPv4, ICMP, TCP, UDP, DHCP, FTP, SNMP
V1/V3, HTTP, NTP, NFS, SMTP, SSH 1.0/2.0, SSL, Telnet, PPPoE,
OpenVPN

File System JFFS2, NFS, Ext2, Ext3, VFAT/FAT

OS shell command | Bash

Busybox Linux normal command utility collection

Utilities

tinylogin login and user manager utility

telnet telnet client program

ftp FTP client program

smtpclient email utility

scp Secure file transfer Client Program

Daemons

pppd dial in/out over serial port daemon

snmpd snmpd agent daemon

telnetd telnet server daemon

inetd TCP server manager program

ftpd ftp server daemon

apache web server daemon

sshd secure shell server

openvpn virtual private network

openssl open SSL

Linux Tool Chain

Gee (V3.3.2) C/C++ PC Cross Compiler

GDB (V5.3) Source Level Debug Server

Glibc (V2.2.5) POSIX standard C library

http://sources.redhat.com/jffs2/jffs2.pdf
http://developer.axis.com/software/jffs/
http://www.linux-mtd.infradead.org/

2

Getting Started

In this chapter, we explain how to connect the IA240/241, how to turn on the power, how to get
started programming, and how to use the IA240/241°s other functions.

The following topics are covered in this chapter:

O Powering on the 1A240/241
O Connecting the 1A240/241 to a PC
» Serial Console
» Telnet Console
» SSH Console
O Configuring the Ethernet Interface
» Modifying Network Settings with the Serial Console
» Modifying Network Settings over the Network
O Configuring the WLAN via the PCMCIA Interface
» IEEER02.11g
O SD Socket and USB for Storage Expansion
O Test Program—Developing Hello.c
» Installing the Tool Chain (Linux)
» Checking the Flash Memory Space
» Compiling Hello.c
» Uploading and Running the “Hello” Program
U Developing Your First Application
» Testing Environment
Compiling teps2.c
Uploading and Running the “tcps2-release” Program

Y V V

Testing Procedure Summary

1A240/241 Linux User’s Manual Getting Started

Powering on the 1A240/241

Connect the SG wire to the shielded contact located in the upper left corner of the 1A240/241, and
then power on the computer by connecting it to the power adaptor. It takes about 30 to 60 seconds
for the system to boot up. Once the system is ready, the Ready LED will light up.

NOTE After connecting the 1A240/241 to the power supply, it will take about 30 to 60 seconds for the
operating system to boot up. The green Ready LED will not turn on until the operating system is
ready.

fi ATTENTION
This product is intended to be supplied by a Listed Power Unit and output marked with “LPS”
and rated 12-48 VDC, 580 mA (minimum requirements).

Connecting the 1A240/241 to a PC

There are two ways to connect the IA240/241 to a PC: through the Serial Console port or via
Telnet over the network.

Serial Console

The serial console port gives users a convenient way of connecting to the IA240/241’s console
utility. This method is particularly useful when using the computer for the first time. The signal is
transmitted over a direct serial connection, so you do not need to know either of its two IP
addresses in order to connect to the serial console utility.

Use the serial console port settings shown below.

Baudrate 115200 bps
Parity None

Data bits 8

Stop bits: 1

Flow Control None
Terminal VT100

Once the connection is established, the following window will open.

1A240/241 Linux User’s Manual

Getting Started

IE‘_\ PComm Terminal Emulator - COM1,115200,None 8,1, ¥T100
Profile Edit PortMeamnager Window Help

4l QIR (e[3|28

B coM1,115200,None,8,1,¥ T100

714 root 4z5 =

(=1e

Sshinfgetty 115200 toysl
715 root GZ8 R ps

root@Moxac A §

Moxa login: rookb

Password:

:£:3:34 F:3:2:3 1 EE:3:3:3:3 HEFHREE FHEFHH #¥
2 23 2 33 FEH HEH HEHE HEEH HEE
323 b33 £33 #H¥ 343 #¥ F:3:23
323 HEEH #5 #5 :2:23 # HEEH
53 # #8 HEE #HH H#EH #4 #4 #4
#§ ## # £ HHF 23 HESF ¥ ##
#§ FEF #F #£§5 ## 23 HESF ¥ FEH
¥§ EF 0§ #E EE ¥# 323 HEFEFEE
#§ #§ £ #§ g#F 223 HESFH # #E
¥# .43 #E EEE £33 ## FiE # F:3:34
23 223 #E #5 #5 23 323 23 23
HH#¥ # ## ## # Hi¥ #
SEEFEE F HESSEE f:2:3:3:2:3 3 34 S#EEHHES FESFESHHEEF SFHEEFS

For further information check:
http: S/ moxa. com,’

root@Moxas ~§ I

State:OPEM L=l G ot Break Signa

To log in, type the Login name and password as requested. The default values are both root:

Login: root
Password: root

Telnet Console

If you know at least one of the two IP addresses and netmasks, then you can use Telnet to connect
to the IA240/241°s console utility. The default IP address and Netmask for each of the two ports
are given below:

Default IP Address Netmask
LAN1 192.168.3.127 255.255.255.0
LAN 2 192.168.4.127 255.255.255.0

Use a cross-over Ethernet cable to connect directly from your PC to the IA240/241. You should
first modify your PC’s IP address and netmask so that your PC is on the same subnet as one of
[1A240/241’s two LAN ports. For example, if you connect to LAN 1, you can set your PC’s IP
address to 192.168.3.126 and netmask to 255.255.255.0. If you connect to LAN 2, you can set
your PC’s IP address to 192.168.4.126 and netmask to 255.255.255.0.

To connect to a hub or switch connected to your local LAN, use a straight-through Ethernet cable.
The default IP addresses and netmasks are shown above. To login, type the Login name and
password as requested. The default values are both root:

Login: root

Password: root

2-3

1A240/241 Linux User’s Manual

Getting Started

Telnet 192.168.27 139

Moxa login: root
Password:

HiH HiH
i HiHEH
i #i
i #iH
winn 1 un

b2
Hi
Hi
i
i
b2
Hi
HHEEHE B HAHEHE

For further informat
http:/“wuw.moxa.com”

rootBMoxa:z™#

Y

i Hii
HiH i
i #H
ik i
i H
#i #i
#i #i
i
i
H

i

HHEE

ion check:

o]
[« |

HHEEREE #i
i HiHEH i
#i Hi i
#i # T
nin i i un
22 o

HHHE # Wi

Hii HHEE Y

Hi i # i

i nnn] 15803

H i b b2

#i # i

HHEEREE R SRR

You can proceed with configuring the network settings of the target computer when you reach the
bash command shell. Configuration instructions are given in the next section.

c ATTENTION
Serial Console Reminder

Remember to choose VT100 as the terminal type. Use the cable CBL-RJ45F9-150, which comes
with the [A240/241, to connect to the serial console port.

Telnet Reminder

When connecting to the IA240/241 over a LAN, you must configure your PC’s Ethernet IP
address to be on the same subnet as the IA240/241 that you wish to contact. If you do not get
connected on the first try, re-check the serial and IP settings, and then unplug and re-plug the

1A240/241’s power cord.

SSH Console

The 1A240/241 supports an SSH Console to provide users with better security options.

Windows Users

Click on the link http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html to download

PuTTY (free software) to set up an SSH console for the IA240/241 in a Windows environment.
The following figure shows a simple example of the configuration that is required.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

1A240/241 Linux User’s Manual

Getting Started

2% PuTTY Configuration

Categony:
=I- Session s
Lagging
=I- Terminal
K.evboard
Bell
Features
=1 Window
Appearance
Behaviour
Tranzlation
Selection
Caolours
=I- Connection
Data
Prosy
Telnet
Rlogin
= S5H
Kex
Auth
®11
Tunnels “

Bazic options for gour PUuT T session

Specify your connection by host name or IP address

Hozt Mame [or IP address) Port
192 168 27 122 22
Protocal;

) Raw (3 Telnet) Rlogin (%1 55H

Load, zave or delete a stored seszion
Saved Seszions

Embedded Computer

Detault Settings Load
192.168.27.1241
192168 27 127

192.168.27.128
1395.226.66.181

Embedded Computer

Cloge window an exit:
O dlways (O Mewer (23 Only on clean exit

I Open] [LCancel

Linux Users

From a Linux machine, use the “ssh” command to access the IA240/241’s console utility via SSH.

#ssh 192.168.3.127

Select yes to complete the connection.

[root@bee notebook root]# ssh 192.168.3.127
The authenticity of host '192.168.3.127 (192.168.3.127)’ can’t be established.

RSA key fingerprint is 8b:ee:ff:84:41:25:fc:cd:2a:£2:92:8f:cb:1f:6b:2f.

Are you sure you want to continue connection (yes/no)? yes

NOTE SSH provides better security compared to Telnet for accessing the [A240/241’s console utility

over the network.

1A240/241 Linux User’s Manual Getting Started

Configuring the Ethernet Interface

The network settings of the [A240/241 can be modified with the serial console, or online over the
network.

Modifying Network Settings with the Serial Console

In this section, we use the serial console to configure the network settings of the target computer.

1. Follow the instructions given in a previous section to access the Console Utility of the target
computer via the serial console port, and then type #cd /etc/network to change directories.

IE‘_" PComrm Tenminal Emulator - COR1,115200,Mane,8,1,%¥ T100 - | O | 5[
Profile Edit Port Manager Window Help

8 gA ===l K28

BRCOM1, 1152000 gt L BIEE
Foot@Moxa: /# od feto/network/ ;I

[oo = T

OTR LI

State:OPEN (2 (B (57 (B [ERTTRSEIeene 4

2. Type #vi interfaces to edit the network configuration file with vi editor. You can
configure the Ethernet ports of the IA240/241 for static or dynamic (DHCP) IP addresses.

Static IP addresses:

As shown below, 4 network addresses must be modified: address, network, netmask, and
broadcast. The default IP addresses are 192.168.3.127 for LAN1 and 192.168.4.127 for
LAN2, with default netmask of 255.255.255.0.

We always want the loopback interface.

auto eth® ethl lo
iface lo inet loopback

f# embedded ethernet LAN1]
iface eth® inet static
address 192.168.3.127
network 192.168.3.0
netmask 255.255.255.8
broadcast 192.168.3.255

f# embedded ethernet LAN2

iface ethl inet static
address 192.168.4.127
network 192.168.4.6
netmask 255.255.255.0

\ broadcast 192.168.4.255

802.11g Gigabyte Cardbus wireless card
#iface eth? inet static

address 192.168.5.127

network 192.168.5.0
"Jfetc/network/interfaces” line 1 of 162 —-8%—-

2-6

1A240/241 Linux User’s Manual Getting Started

Dynamic IP addresses:

By default, the IA240/241 is configured for “static” IP addresses. To configure one or both
LAN ports to request an IP address dynamically, replace static with dhep and then delete the
address, network, netmask, and broadcast lines.

Default Setting for LAN1 Dynamic Setting using DHCP

iface eth0 inet static iface eth0 inet dhep
address 192.168.3.127
network: 192.168.3.0
netmask 255.255.255.0
broadcast 192.168.3.255

auto eth® ethl lo
iface lo inet loopback

(iface eth® inet dhcp]

iface ethl inet dhcp

3. After the boot settings of the LAN interface have been modified, issue the following
command to activate the LAN settings immediately:

#/etc/init.d/networking restart

NOTE

After changing the IP settings, use the networking restart command to activate the new IP
address.

Modifying Network Settings over the Network

IP settings can be activated over the network, but the new settings will not be saved to the flash
ROM without modifying the file /etc/network/interfaces.

For example, type the command #ifconfig eth0 192.168.1.1 to change the IP address of
LANI to 192.168.1.1.

root@Moxa: " # ifconfig eth® 192.168.27.125
root@Hoxa: # _

Configuring the WLAN via the PCMCIA Interface
IEEE802.119g

The following IEEE802.11g wireless card modules are supported:

e ASUS—WL-107g

® CNET—CWC-854 (181D version)

o Edmiax—EW-7108PCg

® Amigo—AWP-914W

® GigaByte—GN-WMKG

® Other brands that use the Ralink RT2500 series chip set
To configure the WLAN for IEEE802.11g:

2-7

1A240/241 Linux User’s Manual Getting Started

1. Unplug the CardBus Wireless LAN card first.

2. Use the command #vi /etc/networking/interfaces to open the “interfaces”

configuration file with vi editor, and then edit the 802.11g network settings (circled in red in
the following figure).

Telnet 192.168.27.139

mAddress 192.168.3.127
network 192.168.3.8
netmask 255.255.255.8
broadcast 192.168.3.255

it embedded ethernet LANZ2

iface ethl inet static
address 192.168.4.127
network 192 _168.4.8
netmask 255.255.255.8
broadcast 192.168.4.255

gt Mireless (WiFi)» LAM

1face eth2 inet static
address 192.168.5.127
network 192.168.5.8
netmask 255.255.255.8
broadcast 1922.168.5.255

H An example ethernet card setup: (hroadcast and gateway are optional’
i

it auto eth@

ft iface ethd inet static

"setcs/network/interfaces” line 24 of 162 ——14x—

3. Additional WLAN parameters are contained in the file RT2500STA.dat. To open the file,
navigate to the RT2500STA folder and invoke vi, or type the command
#vi /etc/Wireless/RT2500STA/RT2500STA.dat to edit the file with vi editor. Options
for the various parameters are listed below the figure.

Profile Edit Port Manager Window Help

|l JH[E === 28] |

il s

[Defanalt]
hTR CountryRaegion=0
ETZ ilirelessMode=0

SEID=ary
MetworkType=TInfra
Chanmnel=0
BuathMMode=0FEN
Enncrywp Type=NONE
DefaultHeyIDh=1
EoywlStr=01zZ24E5c720
FHeiysStcr=

HeywIsStcr=

[HeywdScr=
MpaPsk=ahcde fghijklmnopgr SEavwmxys
THEur=st=0
TurboRate=0
ECProtcection=0
ShortSlot=0
TxRate=0
ETSThraeshold=2Z31Z
FragThreshold=2Z212Z

SHMode=CAM
"AetoMTireless ARTZE00STA/RTZE00STA dat" line 1 of 234 ——=Z2%——

State: OPEM =l G ot Break Signal

2-8

1A240/241 Linux User’s Manual Getting Started

CountryRegion—Sets the channels for your particular country / region

Setting Explanation

0 use channels 1 to 11
1 use channels 1 to 11
2 use channels 1 to 13
3 use channels 10, 11
4 use channels 10 to 13
5 use channel 14

6 use channels 1 to 14
7 use channels 3 to 9

WirelessMode—Sets the wireless mode

Setting Explanation
0 11b/g mixed
1 11b only
2 11g only

SSID—Sets the softAP SSID
Setting
Any 32-byte string

Network Type—Sets the wireless operation mode

Setting Explanation
Infra Infrastructure mode (uses access points to transmit data)
Adhoc Adhoc mode (transmits data from host to host)

Channel—Sets the channel

Setting Explanation
0 Auto
1to 14 the channel you want to use

AuthMode—Sets the authentication mode

Setting
OPEN
SHARED
WPAPSK
WPANONE

1A240/241 Linux User’s Manual Getting Started

EncrypType—Sets encryption type

Setting
NONE
WEP
TKIP
AES

DefaultKeyID—Sets default key ID
Setting
1to4

Key1Str, Key2Str, Key3Str, Key4Str—Sets strings Key1 to Key4

Setting

The keys can be input as 5 ascii characters, 10 hex numbers, 13 ascii characters, or 26
hex numbers

TxBurst—WPA pre-shared key
Setting

8 to 64 ascii characters

WpaPsk—Enables or disables TxBurst

Setting Explanation
0 disable
1 enable

TurboRate—Enables or disables TurboRate

Setting Explanation
0 disable
1 enable

BGProtection—Sets 11b/11g protection (this function is for engineering testing only)

Setting Explanation
0 auto

1 always on

2 always off

210

1A240/241 Linux User’s Manual Getting Started
ShortSlot—Enables or disables the short slot time
Setting Explanation
0 disable
1 enable
TxRate—Sets the TxRate
Setting Explanation
0 Auto
1 1 Mbps
2 2 Mbps
3 5.5 Mbps
4 11 Mbps
5 6 Mbps
6 9 Mbps
7 12 Mbps
8 18 Mbps
9 24 Mbps
10 36 Mbps
11 48 Mbps
12 54 Mbps

RTSThreshold—Sets the RTS threshold

Setting

1 to 2347

FragThreshold—Sets the fragment threshold

Setting

256 to 2346

1A240/241 Linux User’s Manual Getting Started

SD Socket and USB for Storage Expansion

Both the IA240 and 1A241 provide an SD socket for storage expansion. Moxa provides an SD
flash disk for plug & play expansion that allows users to plug in a Secure Digital (SD) memory
card compliant with the SD 1.0 standard for up to 1 GB of additional memory space, or a Secure
Digital High Capacity (SDHC) memory card compliant with the SD 2.0 standard for up to 16 GB
of additional memory space.The SD socket is located on the front panel of the IA240/241. To
install an SD card, you must first remove the SD protection cover to access the socket, and then
plug the SD card directly into the socket. Remember to press on the SD card first if you want to
remove it.

The SD card will be mounted at /mnt/sd.

In addition to the SD socket, a USB 2.0 host is located on the front panel. The USB host is also
designed for storage expansion. To expand the storage by USB flash disk, you just need to plug
the USB flash disk into this USB port. The flash disk will be detected automatically, and its file
partition will be mounted into the OS. The USB storage will be mounted at /mnt/usbstorage.

Test Program—Developing Hello.c

In this section, we use the standard “Hello” programming example to illustrate how to develop a
program for the [A240/241. In general, program development involves the following seven steps.

Step 1:
Connect the [A240/241 to a Linux PC.
Step 2:
Install Tool Chain (GNU Cross Compiler & glibc).
Step 3:
Set the cross compiler and glibc environment variables.
Step 4:
Code and compile the program.
Step 5:
Download the program to the 1A240/241 Via FTP or
NFS.
Step 6:
Debug the program
- If bugs are found, return to Step 4.
- If no bugs are found, continue with Step 7.
Step 7:
Back up the user directory (distribute the program to
additional 1A240/241 units if needed).

1A240/241 Linux User’s Manual Getting Started

Installing the Tool Chain (Linux)

The Linux Operating System must be pre-installed in the PC before installing the IA240/241 GNU
Tool Chain. Fedora core or compatible versions are recommended. The Tool Chain requires
approximately 100 MB of hard disk space on your PC. The IA240/241 Tool Chain software is
located on the IA240/241 CD. To install the Tool Chain, insert the CD into your PC and then issue
the following commands:

#mount /dev/cdrom /mnt/cdrom
#sh /mnt/cdrom/tool-chain/linux/install.sh

The Tool Chain will be installed automatically on your Linux PC within a few minutes. Before
compiling the program, be sure to set the following path first, since the Tool Chain files, including
the compiler, link, library, and include files are located in this directory.

PATH=/usr/local/arm-linux/bin:$PATH

Setting the path allows you to run the compiler from any directory.

Checking the Flash Memory Space

If the flash memory is full, you will not be able to save data to the Flash ROM. Use the following
command to calculate the amount of “Available” flash memory:

/>df -h

Iﬁ‘_\ PComm Terminal Emulator - COM1,115200, None, 8,1, ¥ T100
Profile Edit Port Manager Window Help

o B[== 58]

E*® cOM1,115200,None,8,1,¥ T100

,: Sdev/mtdkh]lock: &_0M 458 _ 0k E_EM 2% fhone s
Sdevw/mbdblocks & 0M 4828 0k 55N 8% fetc
’H tmp f= 20.4M [u] 20.4M 0% sdew/shm
'E root@Moxa: ~# df -h
Filesystem Size Uszed Awailable Usei: Mounted on
Sdevw/mbdblocks 8.0M & 0M Z.0M TE% S
Adewrand 495 _ 0k 16._0k 458 0k 3% fwar
Fdevw/mtdbhlacks &_0M 4380k LE.tHn 2% ftup
Sdevw/medblocks3 & 0M 435 0k 5.tN 8% rhome
Fdev/utdblocks .0 422, 0k L.EN 2% fetc
tmp £= 30.4M u] 30.4M 0% fdew/shm
root@Moxa:~# w
State:OPEN sl G ot B

If there isn’t enough “Available” space for your application, you will need to delete some existing
files. To do this, connect your PC to the IA240/241 with the console cable, and then use the
console utility to delete the files from the IA240/241’s flash memory. To check the amount of free
space available, look at the directories in the read/write directory /dev/mtdblock3. Note that the
directories /home and /etc are both mounted on the directory /dev/mtdblock3.

NOTE

If the flash memory is full, you will need to free up some memory space before saving files to
the Flash ROM.

Compiling Hello.c

The package CD contains several example programs. Here we use Hello.c as an example to show
you how to compile and run your applications. Type the following commands from your PC to
copy the files used for this example from the CD to your computer’s hard drive:

cd /tmp/
mkdir example

213

1A240/241 Linux User’s Manual Getting Started

cp -r /mnt/cdrom/example/* /tmp/example

To compile the program, go to the Hello subdirectory and issue the following commands:

#cd example/hello
#make

You should receive the following response:

[root@localhost hello]# make
/usr/local/arm-linux/bin/arm-linux-gcc -o hello-release hello.c

/usr/local/arm-linux/bin/arm-linux-strip -s hello-release
/usr/local/arm-linux/bin/arm-linux-gcc —-ggdb -o hello-debug hello.c
[root@localhost hellol#

Next, execute hello.exe to generate hello-release and hello-debug, which are described below:
hello-release—an ARM platform execution file (created specifically to run on the 1A240/241)

hello-debug—an ARM platform GDB debug server execution file (see Chapter 5 for details about
the GDB debug tool).

NOTE

Since Moxa’s tool chain places a specially designed Makefile in the directory
/tmp/example/hello, be sure to type the #make command from within that directory. This
special Makefile uses the mxscale-gcc compiler to compile the hello.c source code for the Xscale
environment. If you type the #make command from within any other directory, Linux will use
the x86 compiler (for example, cc or gec).

Refer to Chapter 5 to see a Makefile example.

Uploading and Running the “Hello” Program

Use the following commands to upload hello-release to the I1A240/241 via FTP.
1. From the PC, type:

#ftp 192.168.3.127

2. Use the bin command to set the transfer mode to Binary mode, and then use the put command
to initiate the file transfer:

ftp> bin
ftp> put hello-release

3. From the [A240/241, type:

chmod +x hello-release
./hello-release

The word Hello will be printed on the screen.

root@Moxa:~# ./hello-release
Hello

Developing Your First Application

We use the tcps2 example to illustrate how to build an application. The procedure outlined in the
following subsections will show you how to build a TCP server program plus serial port
communication that runs on the 1A240/241.

214

1A240/241 Linux User’s Manual Getting Started

Testing Environment

The tcps2 example demonstrates a simple application program that delivers transparent,
bi-directional data transmission between the [A240/241’s serial and Ethernet ports. As illustrated
in the following figure, the purpose of this application is to transfer data between PC 1 and the
1A240/241 via an RS-232 connection. At the remote site, data can be transferred between the
1A240/241’s Ethernet port and PC 2 over an Ethernet connection.

PC 2

RS-232
/) —
/f"
Serial Rx
Buffer
LAN Rx
Buffer

Compiling tcps2.c

The source code for the tcps2 example is located on the CD-ROM at
CD-ROM://example/TCPServer2/tcps2.c. Use the following commands to copy the file to a
specific directory on your PC. We use the direrctory /home/ia240241/1st_application/. Note that
you need to copy 3 files—Makefile, tcps2.c, tcpsp.c—from the CD-ROM to the target directory.
#mount -t iso9660 /dev/cdrom /mnt/cdrom

#cp /mnt/cdrom/example/TCPServer2/tcps2.c/home/ia240241/1st _application/tcps2.c

#cp /mnt/cdrom/example/TCPServer2/tcpsp.c/home/ia240241/1st _application/tcpsp.c
#cp /mnt/cdrom/example/TCPServer2/Makefile.c/home/ia240241/1st_application/Makefile

Type #make to compile the example code:

You will get the following response, indicating that the example program was compiled
successfully.

root@serverll:/home/ia240241/1st_application

215

1A240/241 Linux User’s Manual Getting Started

[root@serverll 1st application]# pwd

/home/ia240241/1st application

[root@serverll 1st application]# 11

total 20

-rw-r—r-- 1 root root 514 Nov 27 11:52 Makefile

-rw-r—r-- 1 root root 4554 Nov 27 11:52 tcps2.c

-rw-r—r-- 1 root root 6164 Nov 27 11:55 tcps2.c

[root@serverll 1lst application]# make
/usr/local/arm-linux/bin/arm-linux-gcc -o tcps2-release tcps2.c
/usr/local/arm-linux/bin/arm-linux-strip -s tcps2-release
/usr/local/arm-linux/bin/arm-linux-gcc -o tcpsp-release tcpsp.c
/usr/local/arm-linux/bin/arm-linux-strip —-s tcpsp-release

/usr/local/arm-linux/bin/arm-linux-gcc -ggdb -o tcps2-debug tcps2.c
/usr/local/arm-linux/bin/arm-linux-gcc -ggdb -o tcpsp-debug tcpsp.c
[root@serverll 1lst application]# 11

total 92

—rw-r—-r root root 514 Nov 27 :52 Makefile
—IrWXr—Xr—x root root 25843 Nov 27 203
—IrWXr—Xr-x root root 4996 Nov 27 303

—rw-r—-r root root 4554 Nov 27 :52 tcps2.c
—TWXY—XIr-X root root 26823 Nov 27 :03
—IrWXr—Xr—-x root root 5396 Nov 27 303
-rw-r——r-- root root 6164 Nov 27 :55 tcpsp.c
[root@serverll 1st application]# I

Two executable files, tcps2-release and tcps2-debug, are created.
tcps2-release—an ARM platform execution file (created specifically to run on the 1A240/241)

tcps2-debug—an ARM platform GDB debug server execution file (see Chapter 5 for details about
the GDB debug tool).

NOTE

If you get an error message at this point, it could be because you neglected to put tcps2.c and
tepsp.c in the same directory. The example Makefile we provide is set up to compile both tcps2
and tcpsp into the same project Makefile. Alternatively, you could modify the Makefile to suit
your particular requirements.

Uploading and Running the “tcps2-release” Program

Use the following commands to use FTP to upload teps2-release to the 1A240/241.
1. From the PC, type:

#ftp 192.168.3.127

2. Next, use the bin command to set the transfer mode to Binary, and the put command to
initiate the file transfer:

ftp> bin
ftp> put tcps2-release

2-16

1A240/241 Linux User’s Manual Getting Started

root@serverll:/home/ia240241/1st_application

[root@serverll 1st application]# ftp 192.168.3.127
Connected to 192.168.3.127
220 Moxa FTP server (Version wu-2.6.1(2) Mon Nov 24 12:17:04 CST 2003) ready.
530 Please login with USER and PASS.
530 Please login with USER and PASS.
KERBEROS V4 rejected as an authentication type
Name (192.168.3.127:root): root
331 Password required for root.
Password:
230 User root logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> bin
200 Type set to I.
ftp> put tcps2-release
local: tcps2-release remote: tcps2-release
277 Entering Passive Mode (192.168.3.127.82.253)
150 Opening BINARY mode data connection for tcps2-release.
226 Transfer complete
4996 bytes sent in 0.00013 seconds (3.9e+04 Kbytes/s)
ftp> 1s
227 Entering Passive Mode (192.168.3.127.106.196)
150 Opening ASCII mode data connection for /bin/ls.
1 root root 899 Jun 10 08:11 bash history
-rw-r—-r-- 1 root root 4996 Jun 12 02:15 tcps2-release
226 Transfer complete
ftp> ||

3. From the IA240/241, type:

chmod +x tcps2-release
./tcps2-release &

192.168.3.127 - PuTTY

root@Moxa ls -al
drwxr—xr-x 2 root root 0 Jun 12 02:14
drwxr—xr-x 15 root root 0 Jan 1 1970

1 root root 899 Jun 10 08:11 .bash history
-rw-r—--r-- 1 root root 4996 Jun 12 02:15 tcps2-release
root@Moxa:~# chmod +x tcps2-release

root@Moxa:~# 1ls -al
drwxr—xr-x 2 root root 0 Jun 12 02:14
drwxr—xr-x 15 root root 0 Jan 1 1970

1 root root 899 Jun 10 08:11 .bash history
-rwxr-xr-x 1 root root 4996 Jun 12 02:15
root@Moxa:~#

217

1A240/241 Linux User’s Manual Getting Started

4. The program should start running in the background. Use the #ps —-ef command to check if
the tcps2 program is actually running in the background.

#ps // use this command to check if the program is running

192.168.3.127 — PuTTY

root@Moxa: 1ls -al
drwxr—xr-x 2 root root 0 Jun 12 02:14
drwxr—xr-x 15 root root 0 Jan 1 1970

root root 899 Jun 10 08:11 .bash history
-rw-r—--r-- 1 root root 4996 Jun 12 02:15 tcps2-release
root@Moxa:~# chmod +x tcps2-release
root@Moxa:~# 1ls -al

root root 0 Jun 12 02:14

root root 0 Jan 1 1970
root root 899 Jun 10 08:11 .bash history
-rwxr-xr-x 1 root root 4996 Jun 12 02:15
root@Moxa:~# ./tcps2-release &
[1] 187
start
root@Moxa:~# ps
[1]+ Running ./tcps2-release &
root@Moxa:~# [J

NOTE Use the kill command for job number 1 to terminate this program: #kill %1

#ps -ef // use this command to check if the program is running

192.168.3.127 — PuTTY

[1]+ Running ./tcps2-release &
root@Moxa:~# ps -ef
PID Uid VmSize Stat Command
root 532 init [3]
root [ksoftirqgd/0]
root [events/0]
root [khelper]
root [kblockd/0]
root [khubd]
root [pdflush]
root [pdflush]
root [aio/0]
root [kswapdO]
root [mtdblockd]
[
[

9]
=

root pccardd]
root pccardd]
root [Jffs2 gcd mtd3]
root 500 /bin/inetd
root 3004 /usr/bin/httpd -k /etc/apache
bin 380 /bin/portmap
root 1176 /bin/sh --login
root 464 /bin/snmpd
nobody 3012 /usr/bin/httpd -k /etc/apache
nobody 3012 /usr/bin/httpd -k /etc/apache
nobody 3012 /usr/bin/httpd -k /etc/apache
nobody 3012 /usr/bin/httpd -k /etc/apache
nobody 3012 /usr/bin/httpd -k /etc/apache
root 352 /bin/reportip
root 1176 -bash
root 436 S /bin/telnetd
root 1164 S -bash

728 root 1264 S ./tcps2-release

729 root 1592 S ps -ef

root@Moxa:~# [J

wnn
U’“mmmmmm[ﬂmmmgzz
=

218

1A240/241 Linux User’s Manual Getting Started

NOTE

Use the kill -9 command for PID 187 to terminate this program: #kill -9 %187

Testing Procedure Summary

Compile teps2.c (#make).

Upload and run teps2-release in the background (#./tcps2-release &).
Check that the process is running (#jobs or #ps -ef).

Use a serial cable to connect PC1 to the IA240/241°s serial port 1.

Use an Ethernet cable to connect PC2 to the IA240/241.

On PCI1: If running Windows, use HyperTerminal (38400, n, 8, 1) to open COMn.
On PC2: Type #telnet 192.168.3.127 4001.

On PC1: Type some text on the keyboard and then press Enter.

On PC2: The text you typed on PC1 will appear on PC2’s screen.

e Ao e

e

The testing environment is illustrated in the following figure. However, note that there are
limitations to the example program teps2.c.

PC1

PC2

RS-232

/a

N p

NOTE

The teps2.c application is a simple example designed to give users a basic understanding of the
concepts involved in combining Ethernet communication and serial port communication.
However, the example program has some limitations that make it unsuitable for real-life
applications.

1. The serial port is in canonical mode and block mode, making it impossible to send data from
the Ethernet side to the serial side (i.e., from PC 2 to PC 1 in the above example).

2. The Ethernet side will not accept multiple connections.

3

Managing Embedded Linux

This chapter includes information about version control, deployment, updates, and peripherals.
The information in this chapter will be particularly useful when you need to run the same
application on several IA240/241 units.

The following topics are covered in this chapter:

O System Version Information

O System Image Backup

» Upgrading the Firmware

» Loading Factory Defaults
Enabling and Disabling Daemons
Setting the Run-Level

Adjusting the System Time

» Setting the Time Manually

» NTP Client

» Updating the Time Automatically

OO0 0

0 Cron—Daemon to Execute Scheduled Commands

1A240/241 Linux User’s Manual Managing Embedded Linux

System Version Information

To determine the hardware capability of your IA240/241, and what kind of software functions are
supported, check the version numbers of your IA240/241°s hardware, kernel, and user file system.
Contact Moxa to determine the hardware version. You will need the Production S/N (Serial
number), which is located on the IA240/241°s bottom label.

To check the kernel version, type:
#kversion

192.168.3.127 — PuTTY

root@Moxa:~# kversion

Version 1.0
root@Moxa:~# |

NOTE

The kernel version number is for the factory default configuration, and if you download the latest
firmware version from Moxa’s website and then upgrade the IA240/241°s hardware.

System Image Backup

Upgrading the Firmware

The IA240/241°s bios, kernel, and root file system are combined into one firmware file, which can
be downloaded from Moxa’s website (www.moxa.com). The name of the file has the form
ia240-x.x.x.frm or ia241-x.x.x.frm, with “x.x.x” indicating the firmware version. To upgrade the
firmware, download the firmware file to a PC, and then transfer the file to the IA240/241 via a
serial Console or Telnet Console connection.

A

ATTENTION

Upgrading the firmware will erase all data on the Flash ROM

If you are using the ramdisk to store code for your applications, beware that updating the
firmware will erase all of the data on the Flash ROM. You should back up your application files
and data before updating the firmware.

http://www.moxa.com/

1A240/241 Linux User’s Manual

Managing Embedded Linux

Since different Flash disks have different sizes, it’s a good idea to check the size of your Flash
disk before upgrading the firmware, or before using the disk to store your application and data
files. Use the #df -h command to list the size of each memory block and how much free space is

available in each block.

192.168.3.127 - PuTTY

root@Moxa:~# df -h

Filesystem Size Used Available Us
/dev/mtdblock2 8.0M [2.0M
/dev/ram0 499.0k 16.0k 458.0k
/dev/mtdblock3 6.0M 488.0k 5.5M
/dev/mtdblock3 6.0M 488.0k 5.5M
/dev/mtdblock3 6.0M 488.0k 5.5M
tmpfs 30.4M 0 30.4M

root@Moxa:~# upramdisk

root@Moxa:~# df -h

Filesystem Size
/dev/mtdblock2 8.0M
/dev/ram0 499.0k
/dev/mtdblock3 6.0M
/dev/mtdblock3 6.0M 488.0k 5.5M
/dev/mtdblock3 6.0M 488.0k 5.5M
tmpfs 30.4M 0 30.4M
/dev/raml 16.0M 1.0k 15.1M
root@Moxa:~# cd /mnt/ramdisk
root@Moxa:/mnt/ramdisk# [

Mounted on

/dev/shm

Used Available Use
6.0M 2.0M
16.0k 458.0k

488.0k 5.5M

Mounted on

/dev/shm
/mnt/ramdisk

The following instructions give the steps required to save the firmware file to the IA240/241°s

RAM disk and how to upgrade the firmware.
1. Type the following commands to enable the RAM disk:

#upramdisk
#cd /mnt/ramdisk

2. Type the following commands to use the IA240/241’s built-in FTP client to transfer the
firmware file (ia240-x.x.x.frm or ia241-x.x.x.frm) from the PC to the IA240/241:

/mnt/ramdisk> ftp <destination PC’'s IP>
Login Name: =xxxx

Login Password: xxxx

ftp> bin

ftp> get ia240-x.x.x.frm

192.168.3.127 - PuTTY

root@Moxa:/mnt/ramdisk# ftp 192.168.3.193
Connected to 192.168.3.193 (192.168.3.193).
220 TYPSoft FTP Server 1.10 ready..

Name (192.168.3.193:root): root

331 Password required for root.

Password:

230 User root logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd newsw
250 CWD command successful. “/C:/ftproot/newsw/” is current directory.
ftp> bin

200 Type set to I.

ftp> 1s

200 Port command successful.

150 Opening data connection for directory list.

0 Nov 30 10:03
1 ftp ftp 0 Nov 30 10:03
1 ftp ftp 13167772 Nov 29 10
226 Transfer complete.

drw—rw-rw-—
drw—rw-rw-—
—ITW-YW—YrwW-—

1 ftp ftp

3-3

4 1a240-1.0.frm

1A240/241 Linux User’s Manual Managing Embedded Linux

ftp> get 1a240-1.0.frm

local: 1a240-1.0.frm remote: i1a240-1.0.frm
200 Port command successful.

150 Opening data connection for ia240-1.0.frm

226 Transfer complete.
13167772 bytes received in 2.
ftp> I

3. Next, use the up£irm command to upgrade the kernel and root file system:

#upfirm ia240-x.x.x.frm

192.168.3.127 - PuTTY

root@Moxa: /mnt/ramdisk# upfirm 1a240-1.0.frm

Moxa IA240 upgrade firmware utility version 1.0.

To check source firmware file context.

The source firmware file conext is OK.

This step will destroy all your firmware.

Continue ? (Y/N) : Y

Now upgrade the file [kernel].

Format MTD device [/dev/mtdl]

MTD device [/dev/mtdl] erase 128 Kibyte @ 1C0000 — 100% complete.
Wait to write file

Compleleted 100%

Now upgrade the file [usrdisk].

Format MTD device [/dev/mtd2] . . .

MTD device [/dev/mtd2] erase 128 Kibyte @ 800000 — 100% complete.
Wait to write file

Compleleted 100%

Upgrade the firmware is OK.

ATTENTION

The upfirm utility will reboot your target after the upgrade is OK.

Loading Factory Defaults

To load the the factory default settings, you must press the reset-to-default button for more than 5
seconds. All files in the /home & /etc directories will be destroyed. Note that while pressing the
reset-to-default button, the Ready LED will blink once every second for the first 5 seconds. The
Ready LED will turn off after 5 seconds, and the factory defaults will be loaded.

1A240/241 Linux User’s Manual

Managing Embedded Linux

Enabling and Disabling Daemons

The following daemons are enabled when the IA240/241 boots up for the first time.

snmpd SNMP Agent daemon
.......... Telnet Server / Client daemon
............. Internet Daemons
....FTP Server / Client daemon
.............. Secure Shell Server daemon
............. Apache WWW Server daemon

Type the command “ps —ef” to list all processes currently running.

192.168.3.127 - PuTTY

root@Moxa:~# cd /etc
root@Moxa:/etc# ps -ef
PID Uid VmSize Stat Command
jele}d 532 S init [3]
root SWN [ksoftirgd/0]
root SW< [events/0]
root SW< [khelper]
13 root SW< [kblockd/0]
14 root SW [khubd]
24 root SW [pdflush]
25 root SW [pdflush]
27 root SW< [aio/0]
26 root SW [kswapdO]
604 root SW [mtdblockd]
609 root SW [pccardd]
611 root SW [pccardd]
625 root [Jffs2 gcd mtd3]
673 root 500 /bin/inetd
679 root 3004
682 bin 380
685 root 1176
690 root 464
694 nobody 3012
695 nobody 3012
696 nobody 3012
697 nobody 3012
698 nobody 3012
701 root 352
714 root 1176
726 root 436
727 root 1180
783 root 628
root@Moxa:/ect# I

/bin/portmap
/bin/sh --login
/bin/snmpd

/bin/reportip
-bash
/bin/telnetd
-bash
ps -—ef

TRy pnnnnPoRnd

To run a private daemon, you can edit the file rc.local, as follows:
#cd /etc/rc.d
#vi rc.local
192.168.3.127 - PuTTY
root@Moxa:~# cd /etc/rc.d

root@Moxa:/etc/rc.d# vi rc.localll

/usr/bin/httpd -k /etc/apache

/usr/bin/httpd -k /etc/apache
/usr/bin/httpd -k /etc/apache
/usr/bin/httpd -k /etc/apache
/usr/bin/httpd -k /etc/apache
/usr/bin/httpd -k /etc/apache

Next, use vi to open your application program. We use the example program tcps2-release, and

put it to run in the background.
192.168.3.127 - PuTTY
!/bin/sh

Add you want to run daemon
/root/tcps2-release &~

3-5

1A240/241 Linux User’s Manual Managing Embedded Linux

The enabled daemons will be available after you reboot the system.

192.168.3.127 — PuTTY

root@Moxa:~# ps -ef
PID Uid VmSize Stat Command
root init [3]
root [ksoftirqgd/0]
root [events/0]
root [khelper]
root [kblockd/0]
root [khubd]
root [pdflush]
root [pdflush]
root [aio/0]
root [kswapdO]
604 root [mtdblockd]
609 root [pccardd]
611 root [pccardd]
625 root [Jffs2 gcd mtd3]
673 root 500 /bin/inetd
674 root 1264 /root/tcps2-release
679 root 3004 /usr/bin/httpd -k start /etc/apache
682 bin 380 /bin/portmap
685 root 1176 /bin/sh --login
690 root 464 /bin/snmpd
694 nobody 3012 /usr/bin/httpd -k /etc/apache
695 nobody 3012 /usr/bin/httpd -k /etc/apache
696 nobody 3012 /usr/bin/httpd -k /etc/apache
697 nobody 3012 /usr/bin/httpd -k /etc/apache
698 nobody 3012 /usr/bin/httpd -k /etc/apache
701 root 352 /bin/reportip
714 root 1176 -bash
726 root 436 /bin/telnetd
727 root 1180 -bash
783 root 628 ps -ef
root@Moxa:~#]

TR0 ppnnnRPoRPnonn

Setting the Run-Level

In this section, we outline the steps you should take to set the Linux run-level and execute requests.
Use the following command to enable or disable settings:

192.168.3.127 — PuTTY

root@Moxa:/ect/rc.d/rc3.d# 1ls
S19nfs-common S25nfs-user-serverS99showreadyled

S20snmpd S55ssh
S24pcmcia S99rmnologin
root@Moxa:/etc/rc.d/rc3.d# I

#cd /etc/rc.d/init.d

Edit a shell script to execute /root/tcps2-release and save to teps2 as an example.
#cd /etc/rc.d/re3.d
#1ln -s /etc/rc.d/init.d/tcps2 S60tcps2

SxxRUNFILE stands for
S: start the run file while linux boots up.

xx: a number between 00-99. Smaller numbers have a higher priority.
RUNFILE: the file name.

3-6

1A240/241 Linux User’s Manual Managing Embedded Linux

192.168.3.127 — PuTTY

root@Moxa:/ect/rc.d/rc3.d# 1ls

S19nfs-common S25nfs-user-serverS99showreadyled

S20snmpd S55ssh

S24pcmcia S99rmnologin

root@Moxa:/ect/rc.d/rc3.d# 1ln —-s /root/tcps2-release S60tcps?2

root@Moxa:/ect/rc.d/rc3.d# 1s

S19nfs-common S25nfs-user-serverS99rmnologin
S20snmpd S55ssh S99showreadyled
S24pcmcia S60tcps2

root@Moxa: /etc/rc.d/rc3.d# |

KxxRUNFILE stands for

K: start the run file while linux shuts down or halts.

xx: a number between 00-99. Smaller numbers have a higher priority.
RUNFILE: the file name.

To remove the daemon, remove the run file from the /etc/rc.d/re3.d directory by using the
following command:

#rm -f /etc/rc.d/rc3.d/S60tcps2

Adjusting the System Time
Setting the Time Manually

The 1A240/241 has two time settings. One is the system time, and the other is the RTC (Real Time
Clock) time kept by the IA240/241’s hardware. Use the #date command to query the current
system time or set a new system time. Use #hwclock to query the current RTC time or set a new
RTC time.

Use the following command to query the system time:
#date

Use the following command to query the RTC time:
#hwclock

Use the following command to set the system time:
#date MMDDhhmmYYYY

MM = Month

DD = Date

hhmm = hour and minute
YYYY = Year

Use the following command to set the RTC time:
#hwclock -w

Write current system time to RTC

The following figure illustrates how to update thesystem time and set the RTC time.

3-7

1A240/241 Linux User’s Manual Managing Embedded Linux

192.168.3.127 — PuTTY

root@Moxa:~# date

Fri Jun 23 23:30:31 CST 2000

root@Moxa:~# hwclock

Fri Jun 23 23:30:35 2000 -0.557748 seconds
root@Moxa:~# date 120910002004

Thu Dec 9 10:00:00 CST 2004

root@Moxa:~# hwclock -w

root@Moxa:~# date ; hwclock

Thu Dec 9 10:01:07 CST 2004

Thu Dec 9 10:01:08 2004 -0.933547 seconds
root@Moxa:~# [

NTP Client

The 1A240/241 has a built-in NTP (Network Time Protocol) client that is used to initialize a time
request to a remote NTP server. Use #ntpdate <this client utility>to update the system time.

#ntpdate time.stdtime.gov.tw
#hwclock -w

Visit http://www.ntp.org for more information about NTP and NTP server addresses.

10.120.53.100 - PuTTY

root@Moxa:~# date ; hwclock

Sat Jan 1 00:00:36 CST 2000

Sat Jan 1 00:00:37 2000 =-0.772941 seconds

root@Moxa:~# ntpdate time.stdtion.gov.tw

9 Dec 10:58:53 ntpdate[207]: step time server 220.130.158.52 offset 155905087.9

84256 sec

root@Moxa:~# hwclock -w

root@Moxa:~# date ; hwclock

Thu Dec 9 10:59:11 CST 2004

Thu Dec 9 10:59:12 2004 -0.844076 seconds
root@Moxa:~# [

NOTE Before using the NTP client utility, check your IP and DNS settings to make sure that an Internet
connection is available. Refer to Chapter 2 for instructions on how to configure the Ethernet
interface, and see Chapter 4 for DNS setting information.

Updating the Time Automatically
In this subsection, we show how to use a shell script to update the time automatically.

Example shell script to update the system time periodically

#!/bin/sh

ntpdate time.nist.gov # You can use the time server’s ip address or domain
name directly. If you use domain name, you must
enable the domain client on the system by updating
/etc/resolv.conf file.

hwclock -systohc

sleep 100 # Updates every 100 seconds. The min. time is 100 seconds. Change

100 to a larger number to update RTC less often.

Save the shell script using any file name. E.g., fixtime

3-8

http://www.ntp.org/

1A240/241 Linux User’s Manual Managing Embedded Linux

How to run the shell script automatically when the kernel boots up

Copy the example shell script fixtime to directory /etc/init.d, and then use
chmod 755 fixtime to change the shell script mode. Next, use vi editor to edit the file /etc/inittab.
Add the following line to the bottom of the file:

ntp : 2345 : respawn : /etc/init.d/fixtime

Use the command #init q to re-init the kernel.

Cron—Daemon to Execute Scheduled Commands

Start Cron from the directory /ete/rc.d/rc.local. It will return immediately, so you don’t need to
start it with ‘&’ to run in the background.

The Cron daemon will search /etc/cron.d/crontab for crontab files, which are named after
accounts in /etc/passwd.

Cron wakes up every minute, and checks each command to see if it should be run in the current
minute.

Modify the file /etc/cron.d/crontab to set up your scheduled applications. Crontab files have the
following format:

mm h dom mon dow user |command

min hour date month week user |command
0-59 0-23 1-31 1-12 0-6 (0 is Sunday)

The following example demonstrates how to use Cron.
How to use cron to update the system time and RTC time every day at 8:00.

STEP1: Write a shell script named fixtime.sh and save it to /home/.

#!/bin/sh

ntpdate time.nist.gov
hwclock -systohc

exit 0

STEP2: Change mode of fixtime.sh
#chmod 755 fixtime.sh
STEP3: Modify /etc/cron.d/crontab file to run fixtime.sh at 8:00 every day.
Add the following line to the end of crontab:
* 8 * * * root/home/fixtime.sh
STEP4: Enable the cron daemon manually.
#/etc/init.d/cron start
STEPS: Enable cron when the system boots up.
Add the following line in the file /etc/init.d/rc.local

#/etc/init.d/cron start

4

Managing Communications

In this chapter, we explain how to configure the IA240/241’s various communication functions.

The following topics are covered in this chapter:

oooooo

000

000

Telnet / FTP

DNS

Web Service—Apache

Install PHP for Apache Web Server
IPTABLES

NAT

» NAT Example

» Enabling NAT at Bootup

Dial-up Service—PPP

PPPoE

NFS (Network File System)

» Setting up the IA240/241 as an NFS Client
Mail

SNMP

OpenVPN

1A240/241 Linux User’s Manual Managing Communication

Telnet / FTP

DNS

In addition to supporting Telnet client/server and FTP client/server, the IA240/241 also supports
SSH and sftp client/server. To enable or disable the Telnet/ftp server, you first need to edit the file
/etc/inetd.conf.

Enabling the Telnet/ftp server

The following example shows the default content of the file /etc/inetd.conf. The default is to
enable the Telnet/ftp server:

discard dgram udp wait root /bin/discard

discard stream tcp nowait root /bin/discard

telnet stream tcp nowait root /bin/telnetd
ftp stream tcp nowait root /bin/ftpd -1

Disabling the Telnet/ftp server

Disable the daemon by typing ‘#’ in front of the first character of the row to comment out the line.

The 1A240/241 supports DNS client (but not DNS server). To set up DNS client, you need to edit
three configuration files: /etc/hosts, /etc/resolv.conf, and /etc/nsswitch.conf.

/etc/hosts
This is the first file that the Linux system reads to resolve the host name and IP address.

/etc/resolv.conf

This is the most important file that you need to edit when using DNS for the other programs. For
example, before you use #ntpdate time.nist.goc to update the system time, you will need to add the
DNS server address to the file. Ask your network administrator which DNS server address you
should use. The DNS server’s IP address is specified with the “nameserver” command. For
example, add the following line to /etc/resolv.conf if the DNS server’s IP address is 168.95.1.1:

nameserver 168.95.1.1

10.120.53.100 - PuTTY

root@Moxa:/etc# cat resolv.conf

#

resolv.conf This file is the resolver configuration file
See resolver(5).

#

#nameserver 192.168.1.16
nameserver 168.95.1.1
nameserver 140.115.1.31
nameserver 140.115.236.10
root@Moxa: /etc# |

/etc/nsswitch.conf
This file defines the sequence to resolve the IP address by using /etc/hosts file or /etc/resolv.conf.

1A240/241 Linux User’s Manual Managing Communication

Web Service—Apache

The Apache web server’s main configuration file is /etc/apache/conf/httpd.con£, with the
default homepage located at /home/httpd/htdocs/index.html. Save your own homepage to the
following directory:

/home/httpd/htdocs/
Save your CGI page to the following directory:
/home/httpd/cgi-bin/

Before you modify the homepage, use a browser (such as Microsoft Internet Explore or Mozilla
Firefox) from your PC to test if the Apache Web Server is working. Type the LAN1 IP address in
the browser’s address box to open the homepage. E.g., if the default IP address is still active, type
http://192.168.3.127 in the address box.

2 http://192.168.13.23/ - Microsoft Internet Explorer =13
Elle Edit Yiew Favorites Tools Help |'f
@Back > | \ﬂ @ _;\] /.__\JSearch ‘::'1'\'(Favorites -E‘;I <] - .,_’; ﬁ
Address |g"| httpef {192, 168.13.23] v| Go Links *

It works!

@ Done © Internet

To open the default CGI page, type http://192.168.3.127/cgi-bin/test-cgi in your browser’s
address box.

4-3

1A240/241 Linux User’s Manual Managing Communication

http://192.168.13.23/cgi-binftest-cgi - Microsoft Internet Explorer

File Edit ‘Wiew Favorites Tools Help

eBack @ -J @ @ (h pSearch \i\\?Favurites @ B' :; E -ﬁ

Address @ http:/f192,168,13,.23/cgi-bin/test-cqi

Go Links

CGI/1.0 test Script report:
arge is 0. argv is

SERVER _SCFTWARE = Apache/Z.1.6 (Unix) mod =2 1/2.1.6 Open35L/0.9.8 FHP/5.0.5

SERVER NAME = 1892.168.13.23

GATEWAY INTERFACE = CGIA1.1

SERVER_PROTOCOL = HTTPR/1.1

SERVER_FORT = 80

REQUEST METHOD = GET

HTTP_ACCEPT = image/gif, image/x-xbitwap, imagesjpeg, image/pjpeqg, application/x-shockvave-flash
PATH_INFO =

PATH TRANSLATED =

SCRIPT NAME = /fogi-bin/test-cgi

QUERY_STRING =

REMOTE HOST
REMOTE_ADDR = 182.165.13.25
RENOTE_USER =

AUTH_TYPE =

CONTENT_TYFE =
CONTENT_LENGTH =

< | L
@ Done 0 Internet

To open the default CGI test script report page, type http://192.168.3.127/cgi-bin/test-cgi in your
browser’s address box.

Fle Edit View Go Bookmaks Tools Help

@ - & @ ([htpit132 160 3 127wz binestoi v @6 [C

b Getting Started [Latest Headlines

CGI/1.0 test script report:
argc is 0. argv is .

SERVER_SOFTWARE = Apache/2.0.42 (Unix)
SERVER_NAME = localhost

GATEWAY INTERFACE = CGI/1.1
SERVER_PROTOCCL = HITE/1.1
SERVER_PORT = 80

REQUEST_METHOD = GET

HITP_ACCEPT = text/xml,application/xml,application/xhtml+xml,text/htnl;g=0.9,text/plain;q=0.8, image/png, */*;q=0.5
PATH INFO =

PATH TRANSLATED =

SCRIPT_NAME = /cgi-bin/test-cgi
QUERY_STRING =

REMOTE_HOST =

REMOTE ADDR = 1892.168.3.105
REMOTE_USER =

AUTH_TYPE =

CONTENT_TYPE =

CONTENT_LENGTH =

1A240/241 Linux User’s Manual Managing Communication

NOTE The CGI function is enabled by default. If you want to disable the function, modify the file

/etc/apache/conf/httpd.conf. When you develop your own CGI application, make sure your CGI
file is executable.

192.168.3.127 - PuTTY

root@M /home/httpd/cgi-bin# 1ls -al
drwxr—xr-x 2 root root 0 Aug 24 1999

drwxr—xr-x 5 root root 0 Nov 5 16:16
-rwxr—xr-x 1 root root 757 Aug 24 1999
root@Moxa: /home/httpd/cgi-bin# [J

Install PHP for Apache Web Server

This embedded computer supports the PHP option. However, since the PHP file is 3 MB, it is not

installed by default. To install it yourself, first make sure there is enough free space (at least 3 MB)
on your embedded flash ROM).

Step 1: Check that you have enough free space

192.168.3.127 - PuTTY

root@Moxa:/bin# df -h

Filesystem Size Used Available Mounted on
/dev/mtdblock?2 8.0M 6.0M 2.0M %

/dev/ram0 499.0k 17.0k 457.0k /var
/dev/mtdblock3 6.0M 488.0k 5.5M /tmp
/dev/mtdblock3 6.0M 488.0k 5.5M /home
/dev/mtdblock3 6.0M 488.0k 5.5M /etc

tmpfs 30.4M 0 30.4M 5 /dev/shm
root@Moxa: /bin#

To check that the /dev/mtdblock3 free space is greater than 3 MB.

Step 2: Type ‘upramdisk’ to get the free space ram disk to save the package.

192.168.3.127 - PuTTY
root@Moxa:/bin# upramdisk
root@Moxa:/bin# df -h
Filesystem Size Used Available % Mounted on
/dev/mtdblock2 8.0M 6.0M 2.0M /
/dev/ram0 499.0k 18.0k 456.0k

/dev/mtdblock3 6.0M 488.0k 5.5M /tmp
/dev/mtdblock3 6.0M 488.0k 5.5M /home
/dev/mtdblock3 6.0M 488.0k 5.5M /etc
tmpfs 30.4M 0 30.4M 0% /dev/shm

/dev/raml 16.0M 1.0k 15.1M /var/ramdisk
root@Moxa: /bin#

4-5

1A240/241 Linux User’s Manual Managing Communication

Step 3: Download the PHP package from the CD-ROM. You can find the package in
CD-ROM/target/php/php.tar.gz

192.168.3.127 — PuTTY

root@Moxa:/bin# cd /mnt/ramdisk
root@Moxa:/mnt/ramdisk# ftp 192.168.27.130
Connected to 192.168.27.130.

220 (vsFTPd 2.0.1)

Name (192.168.27.130:root): root

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd /tmp

250 Directory successfully changed.

ftp> bin

200 Switching to Binary mode.

ftp> get php.tar.gz

local: php.tar.gz remote: php.tar.gz

200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for php.tar.gz (1789032 bytes).
226 File send OK.

1789032 bytes received in 0.66 secs (2.6e+03 Kbytes/sec)
ftp>

Step 4: utar the package. To do this, type the command ‘tar xvzf php.tar.gz’

192.168.3.127 - PuTTY

root@Moxa: /mnt/ramdisk# tar xvzf php.tar.gz
envvars
envvars.old
httpd.conf
httpd.conf.old
install.sh

1lib
lib/libmysqglclient.
1lib/libpng.so.2
1lib/libphp5.so
lib/libmysqglclient.
lib/libgd.so
lib/libxml2.so.
lib/libgd.so.2.
lib/libjpeg.so
lib/libxml2.so.
lib/libgd.so.2

php

php/php.ini
phpinfo.php
root@Moxa: /mnt/ramdisk#

Step 5: Run ‘install.sh’ and select to install php

192.168.3.127 - PuTTY

root@Moxa:/mnt/ramdisk# ./install.sh
Press the number:

1. Install PHP package

2. Uninstall PHP package

3. Exit.

1

Start to install PHP. Please wait
Starting web server: apache.

PHP install sucess.

root@Moxa: /mnt/ramdisk#

4-6

1A240/241 Linux User’s Manual Managing Communication

Step 6: Test it. Use the browser to access http://192.168.3.127/phpinfo.php

/3 phpinfo () - Microsoft Internet Explorer EE|
BEE R®ED WRO HHEFW IRO HHQ o

Q-0 NAG Pmdmmr @ 3% 5- Ll

D)] hitpei192.168.27 1 39iphpinto php v|Bns &>
A
PHP Version 5.0.5 @
System Linu Moxa 2.6.9-uc0 #1048 Tue May 9 15:56:02 CST 2006 armv4t]
Build Date Apr 4 2006 22:12:06
Configure ' Jronfigure" --build=i686-inux’ --host=armHinu’ target=armHlinu’ --with-
Command apws2=home/victor fia-240-241ysource_codefuserfapache/instal_me/bin/apxs' “-with-

7ib' -with-gettext’ -disshle-cgi' --enable-force-cgivedract’ -prefic=fhomefvictarfia-
240-241source_codefuserfohpfinstal_me' -with-gpenssl -with-
mysgl=/homevickarfia-240-241 fsource_cade fuserfmysglfinstal_me' --with-config-fle-
path=/etcfapachefphp' “-with-gd=/home/victor fia-240-
241fsource_code/lib/libgdfinstal_me' -with-ibml-cir= fhomefvictor fia-240-
241fsource_codeib/libxmi2finstal_me'

Server API Apache 2.0 Handler

virtual disabled
Directory
Support

Configuration |/etc/apache/phpfphp.ini
File (php.ini)
Path

PHP APT 20031224
PHP Extension |20041030
Zend Extension | 220040412

Debug Build no
Thread Safety |disabled

2end Memory (enabled
Manager

1Pv6 Support (enabled

Registered PHP |php, file, http, fip, compress.zlib, hitps, ftps
Streams

Registered top, udp, unix, udg, ssl, sshv3, ssiv2, tis
Stream Socket
Transports

This program makes usa of the Zend Scripting Language Engine: Powered By
Zend Engine +2.0.5, Capyright (c) 1998-2004 Zend Technolagies

d

PHP Credits

&1xH o R

If you want to uninstall PHP, follow steps 2 to 5 but select the uninstall option.

IPTABLES

IPTABLES is an administrative tool for setting up, maintaining, and inspecting the Linux kernel’s
IP packet filter rule tables. Several different tables are defined, with each table containing built-in
chains and user-defined chains.

Each chain is a list of rules that apply to a certain type of packet. Each rule specifies what to do
with a matching packet. A rule (such as a jump to a user-defined chain in the same table) is called
a “target.”

The 1A240/241 supports 3 types of IPTABLES table: Filter tables, NAT tables, and Mangle
tables:

A. Filter Table—includes three chains:

INPUT chain
OUTPUT chain
FORWARD chain

4-7

http://192.168.3.127/phpinfo.php

1A240/241 Linux User’s Manual Managing Communication

B. NAT Table—includes three chains:

PREROUTING chain—transfers the destination IP address (DNAT)

POSTROUTING chain—works after the routing process and before the Ethernet device
process to transfer the source IP address (SNAT)

OUTPUT chain—produces local packets
sub-tables

Source NAT (SNAT)—changes the first source packet IP address
Destination NAT (DNAT)—changes the first destination packet IP address

MASQUERADE—a special form for SNAT. If one host can connect to Internet, then
other computers that connect to this host can connect to the Internet when the computer
does not have an actual IP address.

REDIRECT—a special form of DNAT that re-sends packets to a local host independent
of the destination IP address.

C. Mangle Table—includes two chains

PREROUTING chain—pre-processes packets before the routing process.
OUTPUT chain—processes packets after the routing process.
It has three extensions—TTL, MARK, TOS.

4-8

1A240/241 Linux User’s Manual

Managing Communication

The following figure shows the IPTABLES hierarchy.

Incoming
Packets

Mangle Table
PREROUTING Chain

NAT Table
PREROUTING Chain

\ 4

Local Host
Packets

Mangle Table
INPUT Chain

Filter Table
INPUT Chain

Local
Process

Mangle Table
OUTPUT Chain

NAT Table
OUTPUT Chain

Filter Table
OUTPUT Chain

\ 4

Other Host
Packets

Mangle Table
FORWARD Chain

Filter Table
FORWARD Chain

Mangle Table
POSTROUTING Chain

y

NAT Table
POSTROUTING Chain

Outgoing
Packets

The 1A240/241 supports the following sub-modules. Be sure to use the module that matches your

application.

ip_conntrack ipt MARK ipt_ah ipt_state
ip_conntrack ftp ipt MASQUERADE |ipt esp ipt_tcpmss
ipt_conntrack irc ipt MIRROT ipt_length ipt_tos
ip_nat_ftp ipt REDIRECT ipt limit ipt_ttl
ip_nat_irc ipt REJECT ipt_mac ipt_unclean
ip_nat snmp_basic ipt. TCPMSS ipt_mark

ip_queue ipt TOS ipt_multiport

ipt LOG ipt ULOG ipt_owner

1A240/241 Linux User’s Manual Managing Communication

NOTE

The 1A240/241 does NOT support IPV6 and ipchains.

The basic syntax to enable and load an IPTABLES module is as follows:

#1smod
#modprobe ip tables
#modprobe iptable filter

Use lsmod to check if the ip_tables module has already been loaded in the [A240/241. Use
modprobe to insert and enable the module.

Use the following command to load the modules (iptable filter, iptable mangle, iptable nat):
#modprobe iptable filter

NOTE

IPTABLES plays the role of packet filtering or NAT. Take care when setting up the IPTABLES
rules. If the rules are not correct, remote hosts that connect via a LAN or PPP may be denied
access. We recommend using the Serial Console to set up the IPTABLES.

Click on the following links for more information about iptables.

http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

Since the IPTABLES command is very complex, to illustrate the IPTABLES syntax we have
divided our discussion of the various rules into three categories: Observe and erase chain rules,
Define policy rules, and Append or delete rules.

Observe and erase chain rules

Usage:

iptables [-t tables] [-L] [-n]
-t tables: Table to manipulate (default: ‘filter”); example: nat or filter.
-L [chain]: ListList all rules in selected chains. If no chain is selected, all chains are listed.
-n: Numeric output of addresses and ports.

iptables [-t tables] [-FXZ]
-F: Flush the selected chain (all the chains in the table if none is listed).
-X: Delete the specified user-defined chain.
-Z: Set the packet and byte counters in all chains to zero.

Examples:

iptables -L -n

In this example, since we do not use the -t parameter, the system uses the default ‘filter’ table.
Three chains are included: INPUT, OUTPUT, and FORWARD. INPUT chains are accepted
automatically, and all connections are accepted without being filtered.

#iptables -F

#iptables -X
#iptables -2

4-10

http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html

1A240/241 Linux User’s Manual Managing Communication

Define policy for chain rules

Usage:

iptables [-t tables] [-P] [INPUT, OUTPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING]
[ACCEPT, DROP]

-P: Set the policy for the chain to the given target.

INPUT: For packets coming into the IA240/241.

OUTPUT: For locally-generated packets.

FORWARD: For packets routed out through the 1A240/241.

PREROUTING: To alter packets as soon as they come in.

POSTROUTING: To alter packets as they are about to be sent out.

Examples:

#iptables —-P INPUT DROP

#iptables —-P OUTPUT ACCEPT

#iptables —-P FORWARD ACCEPT

#iptables -t nat -P PREROUTING ACCEPT
#iptables -t nat -P OUTPUT ACCEPT
#iptables -t nat -P POSTROUTING ACCEPT

In this example, the policy accepts outgoing packets and denies incoming packets.

Append or delete rules:

Usage:
iptables [-t table] [-AI] [INPUT, OUTPUT, FORWARD] [-io interface] [-p tcp, udp, icmp,
all] [-s IP/network] [--sport ports] [-d IP/network] [--dport ports] —j [ACCEPT. DROP]
-A: Append one or more rules to the end of the selected chain.
-I: Insert one or more rules in the selected chain as the given rule number.
-z Name of an interface via which a packet is going to be received.
-0: Name of an interface via which a packet is going to be sent.
-p: The protocol of the rule or of the packet to check.
-s: Source address (network name, host name, network IP address, or plain IP address).
--sport: Source port number.
-d: Destination address.
--dport:Destination port number.
- Jump target. Specifies the target of the rules; i.e., how to handle matched packets. For
example, ACCEPT the packet, DROP the packet, or LOG the packet.

Examples:

Example 1: Accept all packets from lo interface.
iptables -A INPUT -i lo -j ACCEPT

Example 2: Accept TCP packets from 192.168.0.1.
iptables -A INPUT -i ethO -p tcp -s 192.168.0.1 -j ACCEPT

Example 3: Accept TCP packets from Class C network 192.168.1.0/24.
iptables -A INPUT -i ethO -p tcp -s 192.168.1.0/24 -j ACCEPT

Example 4: Drop TCP packets from 192.168.1.25.
iptables —A INPUT -i ethO —-p tcp —-s 192.168.1.25 —j DROP

Example 5: Drop TCP packets addressed for port 21.
iptables -A INPUT -i ethO -p tcp --dport 21 -j DROP

Example 6: Accept TCP packets from 192.168.0.24 to [A240/241’s port 137, 138, 139
iptables —A INPUT -i ethO —-p tcp —-s 192.168.0.24 --dport 137:139 —-j ACCEPT

4-11

1A240/241 Linux User’s Manual Managing Communication

NAT

Example 7: Log TCP packets that visit IA240/241°s port 25.
iptables -A INPUT -i eth0 -p tcp --dport 25 -j LOG

Example 8: Drop all packets from MAC address 01:02:03:04:05:06.
iptables —A INPUT -i ethO —-p all -m mac -mac-source 01:02:03:04:05:06 —j DROP

NOTE: In Example 8, remember to issue the command #modprobe ipt mac first to load module
ipt_mac.

NAT (Network Address Translation) protocol translates IP addresses used on one network to
different IP addresses used on another network. One network is designated the inside network and
the other is the outside network. Typically, the IA240/241 connects several devices on a network
and maps local inside network addresses to one or more global outside IP addresses, and un-maps
the global IP addresses on incoming packets back into local IP addresses.

NOTE Click on the following link for more information about iptables and NAT:
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html
NAT Example

The IP address of LAN1 is changed to 192.168.3.127 (you will need to load the module
ipt MASQUERADE):

TP/Neimaskr 192. 160318 14
CGotowy: 1920680037
PCl (Linux s Windsws)
LaAN1
LANI: 1*L1833.117724
Embeddrd Cenputer
LANI: 1921684127124
| LANZ
P2 (Wi ae Whidbawn)
TP N oimark: 192,160 L1014
Chtewsy: 1921604127
NAT Aroa f Private IP

#echo 1 > /proc/sys/net/ipv4/ip forward

#modprobe ip tables

#modprobe iptable filter

#modprobe ip conntrack

#modprobe iptable nat

#modprobe ipt MASQUERADE

#iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 192.168.3.127
#iptables -t nat -A POSTROUTING -o ethO -s 192.168.3.0/24 -j MASQUERADE

0w J o Ul WN K

4-12

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

1A240/241 Linux User’s Manual Managing Communication

Enabling NAT at Bootup

In most real world situations, you will want to use a simple shell script to enable NAT when the
1A240/241 boots up. The following script is an example.

#!/bin/bash

If you put this shell script in the /home/nat.sh

Remember to chmod 744 /home/nat.sh

Edit the rc.local file to make this shell startup automatically.
vi /etc/rc.d/rc.local

Add a line in the end of rc.local /home/nat.sh

EXIF=‘eth0’ #This is an external interface for setting up a valid IP address.
EXNET='192.168.4.0/24’ #This is an internal network address.

Step 1. Insert modules.

Here 2> /dev/null means the standard error messages will be dump to null device.
modprobe ip_ tables 2> /dev/null

modprobe ip nat_ftp 2> /dev/null

modprobe ip nat_irc 2> /dev/null

modprobe ip_ conntrack 2> /dev/null

modprobe ip_conntrack_ftp 2> /dev/null

modprobe ip conntrack_irc 2> /dev/null

Step 2. Define variables, enable routing and erase default rules.
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin
export PATH

echo “1” > /proc/sys/net/ipv4/ip_forward

/bin/iptables -F

/bin/iptables -X

/bin/iptables -Z

/bin/iptables -F -t nat

/bin/iptables -X -t nat

/bin/iptables -Z -t nat

/bin/iptables -P INPUT ACCEPT

/bin/iptables -P OUTPUT ACCEPT

/bin/iptables -P FORWARD ACCEPT

/bin/iptables -t nat -P PREROUTING ACCEPT

/bin/iptables -t nat -P POSTROUTING ACCEPT

/bin/iptables -t nat -P OUTPUT ACCEPT

Step 3. Enable IP masquerade.

Dial-up Service—PPP

PPP (Point to Point Protocol) is used to run IP (Internet Protocol) and other network protocols over
a serial link. PPP can be used for direct serial connections (using a null-modem cable) over a
Telnet link, and links established using a modem over a telephone line.

Modem / PPP access is almost identical to connecting directly to a network through the
1A240/241’s Ethernet port. Since PPP is a peer-to-peer system, the [A240/241 can also use PPP to
link two networks (or a local network to the Internet) to create a Wide Area Network (WAN).

NOTE

Click on the following links for more information about ppp:
http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

The pppd daemon is used to connect to a PPP server from a Linux system. For detailed
information about pppd see the man page.

4-13

http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

1A240/241 Linux User’s Manual Managing Communication

Example 1: Connecting to a PPP server over a simple dial-up connection

The following command is used to connect to a PPP server by modem. Use this command for old
ppp servers that prompt for a login name (replace username with the correct name) and password
(replace password with the correct password). Note that debug and defaultroute 192.1.1.17 are
optional.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT” “ ogin: username word: password’
/dev/ttyM0 115200 debug crtscts modem defaultroute

If the PPP server does not prompt for the username and password, the command should be entered
as follows. Replace username with the correct username and replace password with the correct
password.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT” “ ‘' user username password password
/dev/ttyM0 115200 crtscts modem

The pppd options are described below:

connect ‘chat etc...’

This option gives the command to contact the PPP server. The ‘chat’ program is used to dial a
remote computer. The entire command is enclosed in single quotes because pppd expects a
one-word argument for the ‘connect’ option. The options for ‘chat’ are given below:

-V

verbose mode; log what we do to syslog

Double quotes—don’t wait for a prompt, but instead do ... (note that you must include a space
after the second quotation mark)

ATDT5551212

Dial the modem, and then ...

CONNECT
Wait for an answer.

Send a return (null text followed by the usual return)

ogin: username word: password

Log in with username and password.

Refer to the chat man page, chat.8, for more information about the chat utility.

/dev/
Specify the callout serial port.

115200

The baudrate.

debug

Log status in syslog.
crtscts

Use hardware flow control between computer and modem (at 115200 this is a must).

modem
Indicates that this is a modem device; pppd will hang up the phone before and after making the
call.

defaultroute
Once the PPP link is established, make it the default route; if you have a PPP link to the Internet,
this is probably what you want.

4-14

1A240/241 Linux User’s Manual Managing Communication

192.1.1.17

This is a degenerate case of a general option of the form x.x.x.x:y.y.y.y. Here x.x.x.x is the local IP
address and y.y.y.y is the IP address of the remote end of the PPP connection. If this option is not
specified, or if just one side is specified, then x.x.x.x defaults to the IP address associated with the
local machine’s hostname (located in /etc/hosts), and y.y.y.y is determined by the remote machine.

Example 2: Connecting to a PPP server over a hard-wired link

If a username and password are not required, use the following command (note that noipdefault is
optional):

#pppd connect ‘chat -v” ™ “ “ ' noipdefault /dev/ttyM0 19200 crtscts

If a username and password is required, use the following command (note that noipdefault is

optional, and root is both the username and password):
#pppd connect ‘chat -v” “ “ “ ' user root password root noipdefault
/dev/ttyM0 19200 crtscts

How to check the connection

Once you’ve set up a PPP connection, there are some steps you can take to test the connection.
First, type:

/sbin/ifconfig

(The folder ifconfig may be located elsewhere, depending on your distribution.) You should be
able to see all the network interfaces that are UP. ppp0 should be one of them, and you should
recognize the first IP address as your own, and the “P-t-P address” (or point-to-point address) the
address of your server. Here’s what it looks like on one machine:

lo Link encap Local Loopback
inet addr 127.0.0.1 Becast 127.255.255.255 Mask 255.0.0.0
UP LOOPBACK RUNNING MTU 2000 Metric 1
RX packets 0 errors 0 dropped 0 overrun 0

ppp0 Link encap Point-to-Point Protocol
inet addr 192.76.32.3 P-t-P 129.67.1.165 Mask 255.255.255.0
UP POINTOPOINT RUNNING MTU 1500 Metric 1
RX packets 33 errors 0 dropped 0 overrun 0
TX packets 42 errors 0 dropped 0 overrun 0

Now, type:
ping z.z.z.z

where z.z.z.z is the address of your name server. This should work. Here’s what the response
could look like:

waddington:~$p ping 129.67.1.165

PING 129.67.1.165 (129.67.1.165): 56 data bytes

64 bytes from 129.67.1.165: icmp_seq=0 ttI=225 time=268 ms
64 bytes from 129.67.1.165: icmp_seq=1 ttI=225 time=247 ms
64 bytes from 129.67.1.165: icmp_seq=2 ttI=225 time=266 ms
~C

--- 129.67.1.165 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 247/260/268 ms

waddington:~$

4-15

1A240/241 Linux User’s Manual Managing Communication

Try typing:

netstat -nr
This should show three routes, something like this:

Kernel routing table

Destination Gateway Genmask Flags Metric Ref Use
iface

129.67.1.165 0.0.0.0 255.255.255.255 UH 0 0 6
ppp0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 01lo
0.0.0.0 129.67.1.165 0.0.0.0 uG 0 0 6298
ppp0

If your output looks similar but doesn’t have the destination 0.0.0.0 line (which refers to the
default route used for connections), you may have run pppd without the ‘defaultroute’ option. At
this point you can try using Telnet, ftp, or finger, bearing in mind that you’ll have to use numeric
IP addresses unless you’ve set up /etc/resolv.conf correctly.

Setting up a Machine for Incoming PPP Connections

PPPoE

This first example applies to using a modem, and requiring authorization with a username and
password.

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2 login auth

You should also add the following line to the file /etc/ppp/pap-secrets:

* * ww *

The first star (*) lets everyone login. The second star (*) lets every host connect. The pair of
double quotation marks (“*) is to use the file /etc/passwd to check the password. The last star (¥)
is to let any IP connect.

The following example does not check the username and password:

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2

1. Connect IA240/241°s LAN port to an ADSL modem with a cross-over cable, HUB, or switch.
2. Login to the IA240/241 as the root user.
3. Edit the file /etc/ppp/chap-secrets and add the following:

“username@hinet.net” *“password”*

S(?(_:rets for authentication using CHAP

S T T, —manm JN I P,
TSI SeirveEr Seci"e aaduitesses

“usernameBhinet.net” = “password”

“"chap-secrets” line 1 of 3 —-33%—

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account.
“password” is the corresponding password for the account.

4-16

1A240/241 Linux User’s Manual Managing Communication

4. Edit the file /etc/ppp/pap-secrets and add the following:
“username@hinet.net” *“password”*

password if you don’t use the login option of pppd! The mgetty Debian
package already provides this option; make sure you don’t change that.

INBOUND connections

¥ Every reJular user can use PPP and has to use passwords from /etc/passuwd
- IIUQD l.IICIIIIC -

"usernamelhinet.net” = "password” =

H UserIDs that cannot use PPP at all. Check your fetc/passwd and add any
other accounts that Should not be able to use pppd!

guest hostname Taet

master hostname Taet -

root hostname Taet -

support hostname Taet -

stats hostname Yt -

OUTBOUND connections

Here you should add your userid password to connect to vour providers via
PAP. The = means that the password is to be used for ANY host you connect
to. Thus you do not have to worry about the foreign machine name. Just

replace password with vour password.

‘pap-secrets” line 1 of 42 —-2%—-

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account.
“password” is the corresponding password for the account.

5. Edit the file /etc/ppp/options and add the following line:
plugin pppoe

terminated because it was idle.
#holdoff <m>

Wait for up n milliseconds after the connect script finishes for a valid
PPP packet from the peer. At the end of this time, or when a valid PPP
packet is received from the peer, pppd will commence negotiation by
sending its first LCP packet. The default value is 1000 {1 second).
This wait perlod only applies if the connect or pty option is used.

L

A1 .
Iu COheTay &

D].ngln pppoe.so

———<End of File>——-

“"options™ line 1 of 342 —-0%—

417

1A240/241 Linux User’s Manual Managing Communication

6. Add one of two files: /etc/ppp/options.eth0 or /etc/ppp/options.ethl. The choice depends on
which LAN is connected to the ADSL modem. If you use LAN1 to connect to the ADSL
modem, then add /etc/ppp/options.eth0. If you use LAN2 to connect to the ADSL modem,
then add /etc/ppp/options.ethl. The file context is shown below:

name usernameBhinet.net
o 1507

defaul troute
noipdefaul t

“options.ixp@” line 1 of 5 —-20%—

Type your username (the one you set in the /etc/ppp/pap-secrets and /etc/ppp/chap-secrets
files) after the “name” option. You may add other options as desired.

7. Setup DNS
If you are using DNS servers supplied by your ISP, edit the file
/ete/resolv.conf by adding the following lines of code:
nameserver ip_addr_of first dns_server
nameserver ip_addr_of _second_dns_server
For example:
nameserver 168..95.1.1
nameserver 139.175.10.20
8. Use the following command to create a pppoe connection:
pppd eth0

The ethO is what is connected to the ADSL modem LAN port. The example above uses LAN1.
To use LAN2, type:

pppd ethl

9. Type ifconfig ppp0 to check if the connection is OK or has failed. If the connection is OK,
you will see information about the ppp0 setting for the IP address. Use ping to test the IP.

10. If you want to disconnect it, use the kill command to kill the pppd process.

4-18

1A240/241 Linux User’s Manual Managing Communication

NFS (Network File System)

The Network File System (NFS) is used to mount a disk partition on a remote machine, as if it
were on a local hard drive, allowing fast, seamless sharing of files across a network. NFS allows
users to develop applications for the IA240/241, without worrying about the amount of disk space
that will be available. The 1A240/241 supports NFS protocol for client.

NOTE

Click on the following links for more information about NFS:
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

Setting up the 1A240/241 as an NFS Client

Mail

The following procedure is used to mount a remote NFS Server.

1. To know the NFS Server’s shared directory.
2. Establish a mount point on the NFS Client site.
3. Mount the remote directory to a local directory.

#mkdir -p /home/nfs/public
#mount -t nfs NFS_Server (IP):/directory /mount/point

Example
#mount -t nfs 192.168.3.100:/home/public /home/nfs/public

smtpclient is a minimal SMTP client that takes an email message body and passes it on to an
SMTP server. It is suitable for applications that use email to send alert messages or important logs
to a specific user.

NOTE

Click on the following link for more information about smtpclient:
http://www.engelschall.com/sw/smtpclient/

To send an email message, use the ‘smtpclient’ utility, which uses SMTP protocol. Type
#smtpclient -help to see the help message.
Example:

smtpclient -s test -f sender@company.com -S IP_address receiver@company.com
< mail-body-message

-s: The mail subject.
-f: Sender’s mail address
-S: SMTP server IP address

The last mail address receiver@company.com is the receiver’s e-mail address.
mail-body-message is the mail content. The last line of the body of the message should contain
ONLY the period .” character.

You will need to add your hostname to the file /etc/hosts.

4-19

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html
http://www.engelschall.com/sw/smtpclient/

1A240/241 Linux User’s Manual

Managing Communication

SNMP

The 1A240/241 has built-in SNMP V1 (Simple Network Management Protocol) agent software. It

supports RFC1317 RS-232 like group and RFC 1213 MIB-II.

The following simple example allows you to use an SNMP browser on the host site to query the

[1A240/241, which is the SNMP agent. The IA240/241 will respond.

e SNMP QUERY STARTED *****

: sysDescr.0 (octet string) Version 1.0

: sysObjectID.0 (object identifier) enterprises.8691.12.240

: sysUpTime.0 (timeticks) 0 days 03h:50m:11s.00th (1381100)
: sysContact.0 (octet string) Moxa Systems Co., LDT.

: sysName.0 (octet string) Moxa
: sysLocation.0 (octet string) Unknown
: sysServices.0 (integer) 6
: ifNumber.0 (integer) 6

: iflndex.1 (integer) 1

: ifIndex.2 (integer) 2
:ifIndex.3 (integer) 3
: ifIndex.4 (integer) 4
s ifIndex.5 (integer) 5
: ifIndex.6 (integer) 6
:ifDescr.1 (octet string) ethO
s ifDescr.2 (octet string) ethl

s ifDescr.3 (octet string) Serial port O
: ifDescr.4 (octet string) Serial port 1
:ifDescr.5 (octet string) Serial port 2
: ifDescr.6 (octet string) Serial port 3
:ifType.1 (integer) ethernet-csmacd(6)
:ifType.2 (integer) ethernet-csmacd(6)

:ifType.3 (integer) other(1)
:ifType.4 (integer) other(1)
:ifType.5 (integer) other(1)

: ifType.6 (integer) other(1)
:ifMtu.1 (integer) 1500

: ifMtu.2 (integer) 1500

: ifMtu.3 (integer) 0

: ifMtu.4 (integer) 0

: ifMtu.5 (integer) 0

: ifMtu.6 (integer) 0
:ifSpeed.1 (gauge) 100000000
: ifSpeed.2 (gauge) 100000000
: ifSpeed.3 (gauge) 38400

: ifSpeed.4 (gauge) 38400

: ifSpeed.5 (gauge) 38400

: ifSpeed.6 (gauge) 38400

: ifPhysAddress.1 (octet string) 00.90.E8.10.02.41 (hex)
: ifPhysAddress.2 (octet string) 00.90.E8.10.02.40 (hex)
: ifPhysAddress.3 (octet string) 00 (hex)

: ifPhysAddress.4 (octet string) 00 (hex)

: ifPhysAddress.5 (octet string) 00 (hex)

: ifPhysAddress.6 (octet string) 00 (hex)

: ifAdminStatus.1 (integer) up(1)

: ifAdminStatus.2 (integer) up(1)

: ifAdminStatus.3 (integer) down(2)

: ifAdminStatus.4 (integer) down(2)

: ifAdminStatus.5 (integer) down(2)

: ifAdminStatus.6 (integer) down(2)

: ifOperStatus.1 (integer) up(1)
: ifOperStatus.2 (integer) up(1)

: ifOperStatus.3 (integer) down(2)
: ifOperStatus.4 (integer) down(2)
: ifOperStatus.5 (integer) down(2)
: ifOperStatus.6 (integer) down(2)
: ifLastChange.1 (timeticks) 0 days 00h:00m:00s.00th (0)

1A240/241 Linux Us

er’s Manual

Managing Communication

58:
59:
60:
61
62:
63:
64:
65:
66:

122
123
124

ifLastChange.2 (timeticks) 0 days 00h:00m:00s.00th (0)
ifLastChange.3 (timeticks) 0 days 00h:00m:00s.00th (0)
ifLastChange.4 (timeticks) 0 days 00h:00m:00s.00th (0)
: ifLastChange.5 (timeticks) 0 days 00h:00m:00s.00th (0)
ifLastChange.6 (timeticks) 0 days 00h:00m:00s.00th (0)

iflnOctets.1 (counter) 25511
ifInOctets.2 (counter) 2240203
ifInOctets.3 (counter) 0
ifInOctets.4 (counter) 0

: ifinOctets.5 (counter) 0

: ifInOctets.6 (counter) 0

: iflnUcastPkts.1 (counter) 254

: ifInUcastPkts.2 (counter) 28224

: iflnUcastPkts.3 (counter) 0

: ifInUcastPkts.4 (counter) 0

: iflnUcastPkts.5 (counter) 0

: iflnUcastPkts.6 (counter) 0

: ifinNUcastPkts.1 (counter) 0

: ifinNUcastPkts.2 (counter) 0

: ifinNUcastPkts.3 (counter) 0

: ifInNUcastPkts.4 (counter) 0

: ifInNUcastPkts.5 (counter) 0

: ifinNUcastPkts.6 (counter) 0

: iflnDiscards.1 (counter) 0

: iflnDiscards.2 (counter) 0

: ifinDiscards.3 (counter) 0

: ifinDiscards.4 (counter) 0

: ifInDiscards.5 (counter) 0

: ifInDiscards.6 (counter) 0

: ifnErrors.1 (counter) 0

: ifInErrors.2 (counter) 0

: ifInErrors.3 (counter) 0

: ifnErrors.4 (counter) 0

: ifnErrors.5 (counter) 0

: ifInErrors.6 (counter) 0

: ifinUnknownProtos.1 (counter) 0
: ifinUnknownProtos.2 (counter) 0
: iflnUnknownProtos.3 (counter) 0
: iflnUnknownProtos.4 (counter) 0
: ifinUnknownProtos.5 (counter) 0
: iflnUnknownProtos.6 (counter) 0
: ifOutOctets.1 (counter) 51987

: ifOutOctets.2 (counter) 3832

: ifOutOctets.3 (counter) O

: ifOutOctets.4 (counter) O

: ifOutOctets.5 (counter) 0

: ifOutOctets.6 (counter) 0

: ifOutUcastPkts.1 (counter) 506
: ifOutUcastPkts.2 (counter) 42
: ifOutUcastPkts.3 (counter) 0

: ifOutUcastPkts.4 (counter) 0

: ifOutUcastPkts.5 (counter) 0

: ifOutUcastPkts.6 (counter) O

: ifOutNUcastPkts.1 (counter) 0
: ifOutNUcastPkts.2 (counter) 0
: ifOutNUcastPkts.3 (counter) 0
: ifOutNUcastPkts.4 (counter) 0
: ifOutNUcastPkts.5 (counter) 0
: ifOutNUcastPkts.6 (counter) 0
: ifOutDiscards.1 (counter) 0

: ifOutDiscards.2 (counter) 0

: ifOutDiscards.3 (counter) 0

: ifOutDiscards.4 (counter) 0

: ifOutDiscards.5 (counter) 0

: ifOutDiscards.6 (counter) 0

: ifOutErrors. 1 (counter) 0

: ifOutErrors.2 (counter) 0

1A240/241 Linux User’s Manual

Managing Communication

125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136
137:
138:
139:
140:
141:
142:
143:
144
145:
146:
147:
148:
149
150:
151:
152:
153
154:
155:
156:
157:
158:
159:
160:
161:
162
163:
164:
165:
166
167:
168:
169:
170:
171:
172:
173:
174:
175
176:
177:
178:
179
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:

ifOutErrors.3 (counter) 0
ifOutErrors.4 (counter) 0
ifOutErrors.5 (counter) 0
ifOutErrors.6 (counter) 0
ifOutQLen.1 (gauge) 1000
ifOutQLen.2 (gauge) 1000
ifOutQLen.3 (gauge) 0
ifOutQLen.4 (gauge) 0
ifOutQLen.5 (gauge) 0
ifOutQLen.6 (gauge) 0
ifSpecific.1 (object identifier) (null-oid) zeroDotZero

: ifSpecific.2 (object identifier) (null-oid) zeroDotZero

ifSpecific.3 (object identifier) (null-oid) zeroDotZero

ifSpecific.4 (object identifier) (null-oid) zeroDotZero

ifSpecific.5 (object identifier) (null-oid) zeroDotZero

ifSpecific.6 (object identifier) (null-oid) zeroDotZero
atIfIndex.1.192.168.27.139 (integer) 1

atlfIndex.2.192.168.4.127 (integer) 2

atPhysAddress.1.192.168.27.139 (octet string) 00.90.E8.10.02.41 (hex)

: atPhysAddress.2.192.168.4.127 (octet string) 00.90.E8.10.02.40 (hex)

atNetAddress.1.192.168.27.139 (ipaddress) 192.168.27.139
atNetAddress.2.192.168.4.127 (ipaddress) 192.168.4.127
ipForwarding.0 (integer) forwarding(1)

ipDefaultTTL.0 (integer) 64

: ipInReceives.0 (counter) 1289

ipInHdrErrors.0 (counter) 0
ipInAddrErrors.0 (counter) 0
ipForwDatagrams.0 (counter) 9

: ipInUnknownProtos.0 (counter) 0

ipInDiscards.0 (counter) 0
ipInDelivers.0 (counter) 1160
ipOutRequests.0 (counter) 858
ipOutDiscards.0 (counter) 0
ipOutNoRoutes.0 (counter) 0
ipReasmTimeout.0 (integer) 0
ipReasmReqds.0 (counter) 0
ipReasmOKs.0 (counter) 0

: ipReasmPFails.0 (counter) O

ipFragOKs.0 (counter) 0
ipFragFails.0 (counter) O
ipFragCreates.0 (counter) 0

: ipAdEntAddr.192.168.27.139 (ipaddress) 192.168.27.139

ipAdEntAddr.192.168.4.127 (ipaddress) 192.168.4.127
ipAdEntlIfIndex.192.168.27.139 (integer) 1
ipAdEntlflndex.192.168.4.127 (integer) 2
ipAdEntNetMask.192.168.27.139 (ipaddress) 255.255.255.0
ipAdEntNetMask.192.168.4.127 (ipaddress) 255.255.255.0
ipAdEntBcastAddr.192.168.27.139 (integer) 1
ipAdEntBcastAddr.192.168.4.127 (integer) 1
ipAdEntReasmMaxSize.192.168.27.139 (integer) 65535

: ipAdEntReasmMaxSize.192.168.4.127 (integer) 65535

ipRouteDest.192.168.4.0 (ipaddress) 192.168.4.0
ipRouteDest.192.168.27.0 (ipaddress) 192.168.27.0
ipRoutelfIndex.192.168.4.0 (integer) 2

: ipRoutelfIndex.192.168.27.0 (integer) 1

ipRouteMetric1.192.168.4.0 (integer) 0
ipRouteMetric1.192.168.27.0 (integer) 0
ipRouteMetric2.192.168.4.0 (integer) -1
ipRouteMetric2.192.168.27.0 (integer) -1
ipRouteMetric3.192.168.4.0 (integer) -1
ipRouteMetric3.192.168.27.0 (integer) -1
ipRouteMetric4.192.168.4.0 (integer) -1
ipRouteMetric4.192.168.27.0 (integer) -1
ipRouteNextHop.192.168.4.0 (ipaddress) 192.168.4.127
ipRouteNextHop.192.168.27.0 (ipaddress) 192.168.27.139
ipRouteType.192.168.4.0 (integer) direct(3)
ipRouteType.192.168.27.0 (integer) direct(3)

4-22

1A240/241 Linux User’s Manual Managing Communication

192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224
225:
226:
227:
228:
229:
230:
231:
232:
233:
234
235:
236:
237:
238:
239:
240:
241
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:

ipRouteProto.192.168.4.0 (integer) local(2)
ipRouteProto.192.168.27.0 (integer) local(2)
ipRouteAge.192.168.4.0 (integer) O

ipRouteAge.192.168.27.0 (integer) O

ipRouteMask.192.168.4.0 (ipaddress) 255.255.255.0
ipRouteMask.192.168.27.0 (ipaddress) 255.255.255.0
ipRouteMetric5.192.168.4.0 (integer) -1
ipRouteMetric5.192.168.27.0 (integer) -1

ipRoutelnfo.192.168.4.0 (object identifier) (null-oid) zeroDotZero
ipRoutelnfo.192.168.27.0 (object identifier) (null-oid) zeroDotZero
ipNetToMedialfIndex.1.192.168.27.139 (integer) 1
ipNetToMedialfIndex.2.192.168.4.127 (integer) 2
ipNetToMediaPhysAddress.1.192.168.27.139 (octet string) 00.90.E8.10.02.41 (hex)
ipNetToMediaPhysAddress.2.192.168.4.127 (octet string) 00.90.E8.10.02.40 (hex)
ipNetToMediaNetAddress.1.192.168.27.139 (ipaddress) 192.168.27.139
ipNetToMediaNetAddress.2.192.168.4.127 (ipaddress) 192.168.4.127
ipNetToMediaType.1.192.168.27.139 (integer) static(4)
ipNetToMediaType.2.192.168.4.127 (integer) static(4)
ipRoutingDiscards.0 (integer) 0

icmpInMsgs.0 (counter) 130

icmpInErrors.0 (counter) 3

icmpInDestUnreachs.0 (counter) 128

icmpInTimeExcds.0 (counter) O

icmpInParmProbs.0 (counter) 0

icmpInSrcQuenchs.0 (counter) 0

icmpInRedirects.0 (counter) 0

icmpInEchos.0 (counter) 2

icmpInEchoReps.0 (counter) 0

icmpInTimestamps.0 (counter) 0

icmpInTimestampReps.0 (counter) 0

icmpInAddrMasks.0 (counter) O

icmpInAddrMaskReps.0 (counter) 0

icmpOutMsgs.0 (counter) 144

icmpOutErrors.0 (counter) 0

icmpOutDestUnreachs.0 (counter) 135

icmpOutTimeExcds.0 (counter) 0

icmpOutParmProbs.0 (counter) 0

icmpOutSrcQuenchs.0 (counter) 0

icmpOutRedirects.0 (counter) 7

icmpOutEchos.0 (counter) 0

icmpOutEchoReps.0 (counter) 2

icmpOutTimestamps.0 (counter) O

icmpOutTimestampReps.0 (counter) 0

icmpOutAddrMasks.0 (counter) 0

icmpOutAddrMaskReps.0 (counter) 0

tcpRtoAlgorithm.0 (integer) other(1)

tcpRtoMin.0 (integer) 200

tcpRtoMax.0 (integer) 120000

tcpMaxConn.0 (integer) -1

: tcpActiveOpens.0 (counter) 0

tcpPassiveOpens.0 (counter) 0

tcpAttemptFails.0 (counter) 0

tcpEstabResets.0 (counter) 0

tepCurrEstab.0 (gauge) 0

tepInSegs.0 (counter) 0

tcpOutSegs.0 (counter) 0

tcpRetransSegs.0 (counter) 0
tcpConnState.192.168.27.139.1024.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.4.127.1024.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.27.139.1025.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.4.127.1025.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.27.139.2049.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.4.127.2049.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.27.139.1026.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.4.127.1026.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.27.139.9.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.4.127.9.0.0.0.0.0 (integer) listen(2)

4-23

1A240/241 Linux User’s Manual Managing Communication

259:
260:
261:
262
263:
264:
265:
266:
267:
268:
269:
270
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283
284:
285:
286:
287
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:

tcpConnState.192.168.27.139.111.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.4.127.111.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.27.139.80.0.0.0.0.0 (integer) listen(2)

: tcpConnState.192.168.4.127.80.0.0.0.0.0 (integer) listen(2)

tcpConnState.192.168.27.139.21.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.4.127.21.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.27.139.22.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.4.127.22.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.27.139.23.0.0.0.0.0 (integer) listen(2)
tcpConnState.192.168.4.127.23.0.0.0.0.0 (integer) listen(2)

tcpConnLocal Address.192.168.27.139.1024.0.0.0.0.0 (ipaddress) 192.168.27.139

: tcpConnLocalAddress.192.168.4.127.1024.0.0.0.0.0 (ipaddress) 192.168.4.127

tcpConnLocal Address.192.168.27.139.1025.0.0.0.0.0 (ipaddress) 192.168.27.139
tcpConnLocalAddress.192.168.4.127.1025.0.0.0.0.0 (ipaddress) 192.168.4.127
tcpConnLocal Address.192.168.27.139.2049.0.0.0.0.0 (ipaddress) 192.168.27.139
tcpConnLocalAddress.192.168.4.127.2049.0.0.0.0.0 (ipaddress) 192.168.4.127
tcpConnLocal Address.192.168.27.139.1026.0.0.0.0.0 (ipaddress) 192.168.27.139
tcpConnLocal Address.192.168.4.127.1026.0.0.0.0.0 (ipaddress) 192.168.4.127
tcpConnLocal Address.192.168.27.139.9.0.0.0.0.0 (ipaddress) 192.168.27.139
tcpConnLocalAddress.192.168.4.127.9.0.0.0.0.0 (ipaddress) 192.168.4.127
tcpConnLocal Address.192.168.27.139.111.0.0.0.0.0 (ipaddress) 192.168.27.139
tcpConnLocal Address.192.168.4.127.111.0.0.0.0.0 (ipaddress) 192.168.4.127
tcpConnLocalAddress.192.168.27.139.80.0.0.0.0.0 (ipaddress) 192.168.27.139
tcpConnLocalAddress.192.168.4.127.80.0.0.0.0.0 (ipaddress) 192.168.4.127

: tcpConnLocal Address.192.168.27.139.21.0.0.0.0.0 (ipaddress) 192.168.27.139

tcpConnLocal Address.192.168.4.127.21.0.0.0.0.0 (ipaddress) 192.168.4.127
tcpConnLocal Address.192.168.27.139.22.0.0.0.0.0 (ipaddress) 192.168.27.139
tcpConnLocal Address.192.168.4.127.22.0.0.0.0.0 (ipaddress) 192.168.4.127

: tepConnLocalAddress.192.168.27.139.23.0.0.0.0.0 (ipaddress) 192.168.27.139

tcpConnLocal Address.192.168.4.127.23.0.0.0.0.0 (ipaddress) 192.168.4.127
tcpConnLocalPort.192.168.27.139.1024.0.0.0.0.0 (integer) 1024
tcpConnLocalPort.192.168.4.127.1024.0.0.0.0.0 (integer) 1024
tcpConnLocalPort.192.168.27.139.1025.0.0.0.0.0 (integer) 1025
tcpConnLocalPort.192.168.4.127.1025.0.0.0.0.0 (integer) 1025
tcpConnLocalPort.192.168.27.139.2049.0.0.0.0.0 (integer) 2049
tcpConnLocalPort.192.168.4.127.2049.0.0.0.0.0 (integer) 2049
tcpConnLocalPort.192.168.27.139.1026.0.0.0.0.0 (integer) 1026
tcpConnLocalPort.192.168.4.127.1026.0.0.0.0.0 (integer) 1026
tcpConnLocalPort.192.168.27.139.9.0.0.0.0.0 (integer) 9
tcpConnLocalPort.192.168.4.127.9.0.0.0.0.0 (integer) 9
tcpConnLocalPort.192.168.27.139.111.0.0.0.0.0 (integer) 111
tcpConnLocalPort.192.168.4.127.111.0.0.0.0.0 (integer) 111
tcpConnLocalPort.192.168.27.139.80.0.0.0.0.0 (integer) 80
tecpConnLocalPort.192.168.4.127.80.0.0.0.0.0 (integer) 80
tcpConnLocalPort.192.168.27.139.21.0.0.0.0.0 (integer) 21
tcpConnLocalPort.192.168.4.127.21.0.0.0.0.0 (integer) 21
tcpConnLocalPort.192.168.27.139.22.0.0.0.0.0 (integer) 22
tcpConnLocalPort.192.168.4.127.22.0.0.0.0.0 (integer) 22
tcpConnLocalPort.192.168.27.139.23.0.0.0.0.0 (integer) 23
tcpConnLocalPort.192.168.4.127.23.0.0.0.0.0 (integer) 23
tcpConnRemAddress.192.168.27.139.1024.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.4.127.1024.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.27.139.1025.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.4.127.1025.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.27.139.2049.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.4.127.2049.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.27.139.1026.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.4.127.1026.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.27.139.9.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.4.127.9.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.27.139.111.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.4.127.111.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.27.139.80.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.4.127.80.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.27.139.21.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.4.127.21.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemAddress.192.168.27.139.22.0.0.0.0.0 (ipaddress) 0.0.0.0

4-24

1A240/241 Linux User’s Manual

Managing Communication

326:
327:
328:
329:
330:
331:
332:
333:
334:
33s:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:

tcpConnRemAddress.192.168.4.127.22.0.0.0.0.0 (ipaddress) 0.0.0.0

tcpConnRemAddress.192.168.27.139.23.0.0.0.0.0 (ipaddress) 0.0.0.0

tcpConnRemAddress.192.168.4.127.23.0.0.0.0.0 (ipaddress) 0.0.0.0
tcpConnRemPort.192.168.27.139.1024.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.1024.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.27.139.1025.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.1025.0.0.0.0.0 (integer) O
tcpConnRemPort.192.168.27.139.2049.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.2049.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.27.139.1026.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.1026.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.27.139.9.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.9.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.27.139.111.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.111.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.27.139.80.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.80.0.0.0.0.0 (integer) O
tcpConnRemPort.192.168.27.139.21.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.21.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.27.139.22.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.22.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.27.139.23.0.0.0.0.0 (integer) 0
tcpConnRemPort.192.168.4.127.23.0.0.0.0.0 (integer) O
tepInErrs.0 (counter) 6

tcpOutRsts.0 (counter) 37224

udpInDatagrams.0 (counter) 434

udpNoPorts.0 (counter) 8

udpInErrors.0 (counter) 0

udpOutDatagrams.0 (counter) 903
udpLocalAddress.192.168.27.139.1024 (ipaddress) 192.168.27.139
udpLocalAddress.192.168.4.127.1024 (ipaddress) 192.168.4.127
udpLocalAddress.192.168.27.139.2049 (ipaddress) 192.168.27.139
udpLocalAddress.192.168.4.127.2049 (ipaddress) 192.168.4.127
udpLocalAddress.192.168.27.139.1026 (ipaddress) 192.168.27.139
udpLocalAddress.192.168.4.127.1026 (ipaddress) 192.168.4.127
udpLocalAddress.192.168.27.139.1027 (ipaddress) 192.168.27.139
udpLocalAddress.192.168.4.127.1027 (ipaddress) 192.168.4.127
udpLocalAddress.192.168.27.139.9 (ipaddress) 192.168.27.139
udpLocalAddress.192.168.4.127.9 (ipaddress) 192.168.4.127
udpLocalAddress.192.168.27.139.161 (ipaddress) 192.168.27.139
udpLocalAddress.192.168.4.127.161 (ipaddress) 192.168.4.127
udpLocalAddress.192.168.27.139.4800 (ipaddress) 192.168.27.139
udpLocalAddress.192.168.4.127.4800 (ipaddress) 192.168.4.127
udpLocalAddress.192.168.27.139.854 (ipaddress) 192.168.27.139
udpLocalAddress.192.168.4.127.854 (ipaddress) 192.168.4.127
udpLocalAddress.192.168.27.139.111 (ipaddress) 192.168.27.139
udpLocalAddress.192.168.4.127.111 (ipaddress) 192.168.4.127
udpLocalPort.192.168.27.139.1024 (integer) 1024
udpLocalPort.192.168.4.127.1024 (integer) 1024
udpLocalPort.192.168.27.139.2049 (integer) 2049
udpLocalPort.192.168.4.127.2049 (integer) 2049
udpLocalPort.192.168.27.139.1026 (integer) 1026
udpLocalPort.192.168.4.127.1026 (integer) 1026
udpLocalPort.192.168.27.139.1027 (integer) 1027
udpLocalPort.192.168.4.127.1027 (integer) 1027
udpLocalPort.192.168.27.139.9 (integer) 9
udpLocalPort.192.168.4.127.9 (integer) 9
udpLocalPort.192.168.27.139.161 (integer) 161
udpLocalPort.192.168.4.127.161 (integer) 161
udpLocalPort.192.168.27.139.4800 (integer) 4800
udpLocalPort.192.168.4.127.4800 (integer) 4800
udpLocalPort.192.168.27.139.854 (integer) 854
udpLocalPort.192.168.4.127.854 (integer) 854
udpLocalPort.192.168.27.139.111 (integer) 111
udpLocalPort.192.168.4.127.111 (integer) 111

rs232Number.0 (integer) 4

rs232PortIndex.1 (integer) 1 [1]

4-25

1A240/241 Linux User’s Manual

Managing Communication

393:
394:
395:
396:
397:
398:
399:
400:
401:
402:
403:
404
405:
406:
407:
408:
409:
410:
411:
412:
413:
414:
415:
416:
417:
418:
419:
420:
421:
422:
423:
424
425:
426:
427:
428:
429:
430:
431:
432:
433:
434
435:
436:
437:
438:
439:
440:
441:
442:
443:
444
445:
446:
447
448:
449:
450:
451:
452:
453:
454
455:
456:
457
458:
459:

rs232PortIndex.2 (integer) 2 [2]
rs232PortIndex.3 (integer) 3 [3]
rs232PortIndex.4 (integer) 4 [4]
rs232PortType.1 (integer) rs232(2)
rs232PortType.2 (integer) rs232(2)
rs232PortType.3 (integer) rs232(2)
rs232PortType.4 (integer) rs232(2)
rs232PortInSigNumber.1 (integer) 3
rs232PortInSigNumber.2 (integer) 3
rs232PortInSigNumber.3 (integer) 3
rs232PortInSigNumber.4 (integer) 3
rs232PortOutSigNumber.1 (integer) 2
rs232PortOutSigNumber.2 (integer) 2
rs232PortOutSigNumber.3 (integer) 2
rs232PortOutSigNumber.4 (integer) 2
rs232PortInSpeed.1 (integer) 38400
rs232PortInSpeed.2 (integer) 38400
rs232PortInSpeed.3 (integer) 38400
rs232PortInSpeed.4 (integer) 38400
rs232PortOutSpeed.1 (integer) 38400
rs232PortOutSpeed.2 (integer) 38400
rs232PortOutSpeed.3 (integer) 38400
rs232PortOutSpeed.4 (integer) 38400
rs232AsyncPortIndex.1 (integer) 1 [1]
rs232AsyncPortIndex.2 (integer) 2 [2]
rs232AsyncPortIndex.3 (integer) 3 [3]
rs232AsyncPortIndex.4 (integer) 4 [4]
rs232AsyncPortBits.1 (integer) 8
rs232AsyncPortBits.2 (integer) 8
rs232AsyncPortBits.3 (integer) 8
rs232AsyncPortBits.4 (integer) 8
rs232AsyncPortStopBits.1 (integer) one(1)
1rs232AsyncPortStopBits.2 (integer) one(1)
rs232AsyncPortStopBits.3 (integer) one(1)
rs232 AsyncPortStopBits.4 (integer) one(1)
rs232AsyncPortParity.1 (integer) none(1)
1rs232AsyncPortParity.2 (integer) none(1)
rs232 AsyncPortParity.3 (integer) none(1)
rs232 AsyncPortParity.4 (integer) none(1)
1s232InSigPortIndex.1.2 (integer) 1 [1]
rs232InSigPortIndex.2.2 (integer) 2 [2
rs232InSigPortIndex.3.2 (integer) 3 [
1s232InSigPortIndex.4.2 (integer) 4 [
1s232InSigPortIndex.1.3 (integer) 1 [
rs232InSigPortIndex.2.3 (integer) 2 [
rs232InSigPortIndex.3.3 (integer) 3 [
1s232InSigPortIndex.4.3 (integer) 4 [
rs232InSigPortIndex.1.6 (integer) 1 [
rs232InSigPortIndex.2.6 (integer) 2 [
1rs232InSigPortIndex.3.6 (integer) 3 [
rs232InSigPortIndex.4.6 (integer) 4 [
rs232InSigName. 1.2 (integer) cts(2)
1s232InSigName.2.2 (integer) cts(2)
1s232InSigName.3.2 (integer) cts(2)
rs232InSigName.4.2 (integer) cts(2)
rs232InSigName.1.3 (integer) dsr(3)
rs232InSigName.2.3 (integer) dsr(3)
rs232InSigName.3.3 (integer) dsr(3)
rs232InSigName.4.3 (integer) dsr(3)
rs232InSigName. 1.6 (integer) dcd(6)
rs232InSigName.2.6 (integer) ded(6)
rs232InSigName.3.6 (integer) ded(6)
rs232InSigName.4.6 (integer) dcd(6)
rs232InSigState.1.2 (integer) off(3)
rs232InSigState.2.2 (integer) off(3)
rs232InSigState.3.2 (integer) off(3)
rs232InSigState.4.2 (integer) off(3)

]
3]
4]
1]
2]
3]
4]
1]
2]
3]
4]

4-26

1A240/241 Linux User’s Manual

Managing Communication

460:
461:
462:
463:
464:
465:
466:
467:

rs232InSigState.1.3 (integer) off(3)
rs232InSigState.2.3 (integer) off(3)
rs232InSigState.3.3 (integer) off(3)
rs232InSigState.4.3 (integer) off(3)
rs232InSigState.1.6 (integer) off(3)
rs232InSigState.2.6 (integer) off(3)
rs232InSigState.3.6 (integer) off(3)
rs232InSigState.4.6 (integer) off(3)

468: 1s2320utSigPortIndex.1.1 (integer) 1 [1]
469: rs2320utSigPortIndex.2.1 (integer) 2 [2]
470: rs2320utSigPortIndex.3.1 (integer) 3 [3]
471: 1s2320utSigPortIndex.4.1 (integer) 4 [4]
472: rs2320utSigPortIndex.1.4 (integer) 1 [1]
473: rs2320utSigPortIndex.2.4 (integer) 2 [2]
474: 1s2320utSigPortIndex.3.4 (integer) 3 [3]
475: rs2320utSigPortIndex.4.4 (integer) 4 [4]

476:
477
478:
479:
480:
481:
482:
483:
484:
485:
486:
487:
488:
489:
490:
491:
492:
493:
494
495:
496:
497:
498:
499:
500:
501:
502:
503:
504:
505:
506:
507:
508:
509:
510:
511:
512:
513:
514:
515:
516:
517:
518:
519:

rs2320utSigName.1.1 (integer) rts(1)
rs2320utSigName.2.1 (integer) rts(1)
1s2320utSigName.3.1 (integer) rts(1)
rs2320utSigName.4.1 (integer) rts(1)
rs2320utSigName. 1.4 (integer) dtr(4)
rs2320utSigName.2.4 (integer) dtr(4)
rs2320utSigName.3.4 (integer) dtr(4)
rs2320utSigName.4.4 (integer) dtr(4)
rs2320utSigState. 1.1 (integer) off(3)
1rs2320utSigState.2.1 (integer) off(3)
1rs2320utSigState.3.1 (integer) off(3)
rs2320utSigState.4.1 (integer) off(3)
rs2320utSigState. 1.4 (integer) off(3)
1rs2320utSigState.2.4 (integer) off(3)
rs2320utSigState.3.4 (integer) off(3)
1rs2320utSigState.4.4 (integer) off(3)
snmpInPkts.0 (counter) 493
snmpOutPkts.0 (counter) 493
snmpInBadVersions.0 (counter) 0

snmpInBadCommunityNames.0 (counter) 0
snmpInBadCommunityUses.0 (counter) 0

snmpInASNParseErrs.0 (counter) 0
snmpInTooBigs.0 (counter) 0
snmpInNoSuchNames.0 (counter) 0
snmpInBadValues.0 (counter) 0
snmpInReadOnlys.0 (counter) 0
snmpInGenErrs.0 (counter) 0
snmpInTotalReqVars.0 (counter) 503
snmpInTotalSetVars.0 (counter) O
snmpInGetRequests.0 (counter) 0
snmpInGetNexts.0 (counter) 506
snmpInSetRequests.0 (counter) 0
snmpInGetResponses.0 (counter) 0
snmpInTraps.0 (counter) 0
snmpOutTooBigs.0 (counter) 0
snmpOutNoSuchNames.0 (counter) 0
snmpOutBadValues.0 (counter) 0
snmpOutGenErrs.0 (counter) 0
snmpOutGetRequests.0 (counter) 0
snmpOutGetNexts.0 (counter) 0
snmpOutSetRequests.0 (counter) 0
snmpOutGetResponses.0 (counter) 517
snmpOutTraps.0 (counter) O

snmpEnableAuthenTraps.0 (integer) disabled(2)

e SNMP QUERY FINISHED *****

4-27

1A240/241 Linux User’s Manual Managing Communication

NOTE

Click on the following links for more information about MIB II and RS-232 like groups:
http://www.fags.org/rfcs/rfc1213.html
http://www.fags.org/rfcs/rfc1317.html

- 1A240/241 does NOT support SNMP trap.

OpenVPN

OpenVPN provides two types of tunnels for users to implement VPNS: Routed IP Tunnels and
Bridged Ethernet Tunnels. To begin with, check to make sure that the system has a virtual
device /dev/net/tun. If not, issue the following command:

mknod /dev/net/tun c 10 200

An Ethernet bridge is used to connect different Ethernet networks together. The Ethernets are
bundled into one bigger, “logical” Ethernet. Each Ethernet corresponds to one physical interface
(or port) that is connected to the bridge.

On each OpenVPN machine, you should generate a working directory, such as /etc/openvpn,
where script files and key files reside. Once established, all operations will be performed in that
directory.

Setup 1: Ethernet Bridging for Private Networks on Different Subnets

1. Set up four machines, as shown in the following diagram.

b

Hast A A
yrTY = OparPH

LaNL: 192162171

LANI: 1L 158.8.173
LANI: 1521588174
LANI: 19216804172
LANE: 1921804174 -
Hest B OpenyFH
Jacal oot

Host A (B) represents one of the machines that belongs to OpenVPN A (B). The two remote
subnets are configured for a different range of IP addresses. When this setup is moved to a
public network, the external interfaces of the OpenVPN machines should be configured for
static IPs, or connect to another device (such as a firewall or DSL box) first.

openvpn --genkey --secret secrouter.key

Copy the file that is generated to the OpenVPN machine.

2. Generate a script file named openvpn-bridge on each OpenVPN machine. This script
reconfigures interface “eth1” as IP-less, creates logical bridge(s) and TAP interfaces, loads

4-28

http://www.faqs.org/rfcs/rfc1213.html
http://www.faqs.org/rfcs/rfc1317.html

1A240/241 Linux User’s Manual Managing Communication

modules, enables IP forwarding, etc.

#!/bin/sh

iface=ethl # defines the internal interface
maxtap="expr 1’ # defines the number of tap devices. I.e., # of tunnels

IPADDR=
NETMASK=
BROADCAST=

it is not a great idea but this system doesn’t support
/etc/sysconfig/network-scripts/ifcfg-ethl
ifcfg vpn()
{
while read f1 £f2 £3 f4 r3
do
if [“"$f1” = “iface” -a “$£f2” = “$iface” -a “"$£3” = “inet” -a “$f4” = “static”];then
i="expr 0°

while
do
if [$i -gt 5]; then
break
fi
i="expr $i + 1°
read f1 f2

case “$fl1” in
address) IPADDR=$f2
netmask) NETMASK=$f2
broadcast) BROADCAST=$£f2
esac
done
break
fi
done < /etc/network/interfaces

}

get the ip address of the specified interface
mname=
module_up ()
{
OoIFS=$IFS
IFS="
\
FOUND="no"”
for LINE in “lsmod’
do
TOK="echo SLINE | cut -d’ ‘' -fl1°
if [“STOK” = “$mname”]; then
FOUND=“yes” ;
break;
fi
done
IFS=$0IFS

if [“$FOUND” = “no”]; then
modprobe $mname

fi

}

start()

{
ifcfg vpn

4-29

1A240/241 Linux User’s Manual Managing Communication

if [' \(-4 “/dev/net” \)]; then
mkdir /dev/net

fi

if [' \(-r “/dev/net/tun” \)]; then

create a device file if there is none
mknod /dev/net/tun c¢ 10 200
fi

load modules “tun” and “bridge”

mname=tun

module_up

mname=bridge

module_up

create an ethernet bridge to connect tap devices, internal interface
brctl addbr br0

brctl addif br0 $iface

the bridge receives data from any port and forwards it to other ports.

i="expr 0°

while

do
generate a tap0 interface on tun
openvpn --mktun --dev tap${i}

connect tap device to the bridge
brctl addif br0 tap${i}

null ip address of tap device
ifconfig tap${i} 0.0.0.0 promisc up

i="expr $i + 1°
if [$i -ge $maxtap]; then
break
fi
done

null ip address of internal interface
ifconfig $iface 0.0.0.0 promisc up

enable bridge ip
ifconfig br0 $IPADDR netmask $NETMASK broadcast $BROADCAST

ipf=/proc/sys/net/ipv4/ip_forward
enable IP forwarding

echo 1 > $ipf

echo “ip forwarding enabled to”
cat $ipf

}

stop() {
echo “shutdown openvpn bridge.”
ifcfg vpn
i="expr 0°
while
do
disconnect tap device from the bridge
brctl delif br0 tap${i}
openvpn --rmtun --dev tap${i}

i="expr $i + 1°
if [$i -ge $maxtap]; then
break
fi
done
brctl delif br0 $iface
brctl delbr br0
ifconfig br0 down

4-30

1A240/241 Linux User’s Manual Managing Communication

ifconfig $iface $IPADDR netmask $NETMASK broadcast $BROADCAST
killall -TERM openvpn
}

case “$1” in
start)

start
stop)

stop
restart)

stop

start

*)
echo “Usage: $0 [start|stop|restart]”
exit 1

esac

exit 0

Create link symbols to enable this script at boot time:

1n -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc3.d/S32vpn-br # for example
1ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc6.d/K32vpn-br # for example

3. Create a configuration file named A-tap0-br.conf and an executable script file named
A-tap0-br.sh on OpenVPN A.

point to the peer

remote 192.168.8.174

dev tap0

secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC

auth MD5

tun-mtu 1500

tun-mtu-extra 64

ping 40

up /etc/openvpn/A-tap0O-br.sh

#!/bin/sh

value after “-net” is the subnet behind the remote peer

route add -net 192.168.4.0 netmask 255.255.255.0 dev br0
#----—-———— - end -—------—----————--—— -

Create a configuration file named B-tap0-br.conf and an executable script file named
B-tap0-br.sh on OpenVPN B.

point to the peer

remote 192.168.8.173

dev tapO

secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC

auth MD5

tun-mtu 1500

tun-mtu-extra 64

ping 40

up /etc/openvpn/B-tap0O-br.sh

#!/bin/sh

value after “-net” is the subnet behind the remote peer

route add -net 192.168.2.0 netmask 255.255.255.0 dev br0
- end -—----—-----————--—— o

Note: Select cipher and authentication algorithms by specifying “cipher” and “auth”. To see
with algorithms are available, type:

4-31

1A240/241 Linux User’s Manual Managing Communication

openvpn --show-ciphers
openvpn --show—auths

4. Start both of OpenVPN peers,

openvpn --config A-tapO-br.confé&
openvpn --config B-tapO-br.confé&

If you see the line “Peer Connection Initiated with 192.168.8.173:5000” on each machine, the
connection between OpenVPN machines has been established successfully on UDP port 5000.

5. On each OpenVPN machine, check the routing table by typing the command:

route
Destination | Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.0 * 255.255.255.0 U 0 0 0 br0
192.168.2.0 * 255.255.255.0 U 0 0 0 br0
192.168.8.0 * 255.255.255.0 U 0 0 0 ethO

Interface ethl is connected to the bridging interface br0, to which device tap0 also connects,
whereas the virtual device tun sits on top of tap0. This ensures that all traffic from internal
networks connected to interface ethl that come to this bridge write to the TAP/TUN device
that the OpenVPN program monitors. Once the OpenVPN program detects traffic on the
virtual device, it sends the traffic to its peer.

6. To create an indirect connection to Host B from Host A, you need to add the following routing
item:

route add -net 192.168.4.0 netmask 255.255.255.0 dev ethO

To create an indirect connection to Host A from Host B, you need to add the following routing
item:

route add -net 192.168.2.0 netmask 255.255.255.0 dev ethO
Now ping Host B from Host A by typing:

ping 192.168.4.174

A successful ping indicates that you have created a VPN system that only allows authorized
users from one internal network to access users at the remote site. For this system, all data is
transmitted by UDP packets on port 5000 between OpenVPN peers.

7. To shut down OpenVPN programs, type the command:
killall -TERM openvpn

4-32

1A240/241 Linux User’s Manual Managing Communication

Setup 2: Ethernet Bridging for Private Networks on the Same Subnet

1. Set up four machines as shown in the following diagram:

Hant &
LN 15931602171

LANI: 1921804772

2. The configuration procedure is almost the same as for the previous example. The only
difference is that you will need to comment out the parameter “up” in
“/etc/openvpn/A-tap0-br.conf” and “/etc/openvpn/B-tap0-br.conf™.

Setup 3: Routed IP

1. Setup four machines as shown in the following diagram:

Inenl nedt
Hast A OparivPH A
LakN1; 1951632173
LaNL: 1921632171
LANI: 1L 158.8.173
LANI: 1521588174
LANI: 19216804172
LANE: 1921804174 -
Hest B OpenyFH
Jacal oot

2. Create a configuration file named “A-tun.conf” and an executable script file named
“A-tun.sh”.

point to the peer

remote 192.168.8.174

dev tun

secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC

auth MD5

tun-mtu 1500

tun-mtu-extra 64

ping 40

ifconfig 192.168.2.173 192.168.4.174
up /etc/openvpn/A-tun.sh

4-33

1A240/241 Linux User’s Manual Managing Communication

#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 gw $5

- end -----mmm e

Create a configuration file named B-tun.conf and an executable script file named B-tun.sh on
OpenVPN B:

remote 192.168.8.173

dev tun

secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC

auth MD5

tun-mtu 1500

tun-mtu-extra 64

ping 40

ifconfig 192.168.4.174 192.168.2.173
up /etc/openvpn/B-tun.sh

#!/bin/sh

value after “-net” is the subnet behind the remote peer

route add -net 192.168.2.0 netmask 255.255.255.0 gw $5
- end —----—-----————--—— -

Note that the parameter “ifconfig” defines the first argument as the local internal interface and
the second argument as the internal interface at the remote peer.

Note that $5 is the argument that the OpenVPN program passes to the script file. Its value is
the second argument of ifconfig in the configuration file.

3. Check the routing table after you run the OpenVPN programs, by typing the command:

route

Destination Gateway Genmsk Flags | Metric | Ref | Use | Iface
192.168.4.174 * 255.255.255.25 UH 0 0 0 tun0

5
192.168.4.0 192.168.4.17 |255.255.255.0 uG 0 0 0 tun0
4

192.168.2.0 * 255.255.255.0 U 0 0 0 ethl

192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

4-34

S

Development Tool Chains

This chapter describes how to install a tool chain in the host computer that you use to develop your
applications. In addition, the process of performing cross-platform development and debugging are
also introduced. For clarity, the IA240/241 embedded computer is called a target computer.

The following functions are covered in this chapter:

U Linux Tool Chain
» Steps for Installing the Linux Tool Chain
» Compilation for Applications
» On-Line Debugging with GDB

1A240/241 Linux User’s Manual Development Tool Chains

Linux Tool Chain

The Linux tool chain contains a suite of cross compilers and other tools, as well as the libraries
and header files that are necessary to compile your applications. These tool chain components
must be installed in your host computer (PC) running Linux. We have confirmed that the
following Linux distributions can be used to install the tool chain.

Fefora core 1 & 2.

Steps for Installing the Linux Tool Chain
The tool chain needs about 485 MB of hard disk space. To install it, follow the steps.

1. Insert the package CD into your PC and then issue the following commands:

#mount /dev/cdrom /mnt/cdrom
#sh /mnt/cdrom/tool-chain/linux/install.sh

Wait for the installation process to complete. This should take a few minutes.
Add the directory /usr/local/arm-linux/bin to your path. You can do this for the current
login by issuing the following commands:

#export PATH=“/usr/local/arm-linux/bin:$PATH"”
Alternatively, you can add the same commands to SHOME/.bash_profile to make it
effective for all login sessions.

Compilation for Applications

To compile a simple C application, use the cross compiler instead of the regular compiler:

#arm-linux-gcc -o example -Wall —-g —-02 example.c

#arm-linux-strip -s example

#arm-linux-gcc -ggdb —o example-debug example.c

Most of the cross compiler tools are the same as their native compiler counterparts, but with an
additional prefix that specifies the target system. In the case of x86 environments, the prefix is
i386-1inux- and in the case of [A204/241 ARM boards, it is arm-linux-.

For example, the native C compiler is gcc and the cross C compiler for ARM in the 1A240/241 is
arm-linux-gcc.

The following cross compiler tools are provided:

ar Manages archives (static libraries)

as Assembler

ctt, gt+ C++ compiler

cpp C preprocessor

gce C compiler

gdb Debugger

1d Linker

nm Lists symbols from object files
objcopy Copies and translates object files
objdump Displays information about object files
ranlib Generates indexes to archives (static libraries)
readelf Displays information about ELF files

1A240/241 Linux User’s Manual Development Tool Chains

size Lists object file section sizes
strings Prints strings of printable characters from files (usually object files)
strip Removes symbols and sections from object files (usually debugging information)

On-Line Debugging with GDB

The tool chain also provides an on-line debugging mechanism to help you develop your program.
Before performing a debugging session, add the option -ggdb to compile the program. A
debugging session runs on a client-server architecture on which the server gdbserver is installed
int the targe computer and the client ddd is installed in the host computer. We’ll asuumne that you
have uploaded a program named hello-debug to the target computer and strat to debug the
program.

1.

Log on to the target computer and run the debugging server program.

#gdbserver 192.168.4.142:2000 hello-debug

Process hello-debug created; pid=38

The debugging server listens for connections at network port 2000 from the network interface

192.168.4.142. The name of the program to be debugged follows these parameters. For a
program requiring arguments, add the arguments behind the program name.

In the host computer, change the directory to where the program source resides.
cd /my_work directory/myfilesystem/testprograms

Execute the client program.

#ddd --debugger arm-linux-gdb hello-debug &

Enter the following command at the GDB, DDD command prompt.
Target remote 192.168.4.99:2000

The command produces a line of output on the target console, similar to the following.
Remote debugging using 192.168.4.99:2000

192.168.4.99 is the machine’s IP address, and 2000 is the port number. You can now begin
debugging in the host environment using the interface provided by DDD.

Set a break point on main by double clicking, or by entering b main on the command line.
Click the cont button.

5-3

1A240/241 Linux User’s Manual Development Tool Chains

On-Line Debugging with Insight

Insight is a graphical user interface that accompanies GDB, the GNU Debugger was written in
Tcl/Tk by people working at Red Hat, Inc., and Cygnus Solutions. Red Hat was generous enough
to make Insight available for public use, and continues to maintain the program.

Click on http://sources.redhat.com/insight/ for more information about using Insight, or click on
Help Topics under the Help menu to read the user manual.

il

File Run ‘iew Control Preferences | Help

Help Topics ‘ _}% ‘ Fil'ld:l | %‘z %& mw‘?

% in o n ‘ o
r o [souRce]

@ || " 74 Source Window < g

ﬁ Insight Index - Microsoft Internet Explorer

File Edit Wiew Favarites Tools Help

.___)Bar.kv ._’Jv |ﬂ @ _;\J

Address I@ CHUCusrlocalymzxscalebisharetinsight 0 helplindesx. html

R

):j Search “f\?l' Favorites {E‘j

s Breakpeint Window
o Console Window

+ Function Browser
e Locals Window
o Memory Window

s Begster Window
s ZESsions

o Source Window
o Stack Window

s Target Window
o Thread Window
+ Watch Window

http://sources.redhat.com/insight/

6

Programmer’s Guide

This chapter includes important information for programmers.
The following functions are covered in this chapter:

Flash Memory Map
Device API

RTC (Real Time Clock)
Buzzer

WDT (Watch Dog Timer)
UART

DI/DO

Make File Example

ocoooo0dO0o

1A240/241 Linux User’s Manual Programmer’s Guide

Flash Memory Map

Partition sizes are hard coded into the kernel binary. To change the partition sizes, you will need to
rebuild the kernel. The flash memory map is shown in the following table.

Address Size Contents

0x00000000 — 0x0003FFFF 256 KB Boot Loader—Read ONLY
0x00040000 — 0x001FFFFF 1.8 MB Kernel object code—Read ONLY
0x00200000 — 0xO009FFFFF 8 MB Root file system (JFFS2) —Read ONLY
0x00A00000 — 0xO0FFFFFF 6 MB User directory (JFFS2) —Read/Write

Mount the user file system to /mnt/usrdisk with the root file system.

NOTE 1. The default Moxa file system only enables the network and CF. It lets users recover the user
file system when it fails.
2. The user file system is a complete file system. Users can create and delete directories and
files (including source code and executable files) as needed.

3. Users can create the user file system on the PC host or target platform, and then copy it to
the TA240/241.

Device API

The 1A240/241 supports control devices with the ioctl system API. You will need to include
<moxadevice.h>, and use the following ioctl function.
int ioctl(int d, int request,..);
Input: int d - open device node return file handle
int request - argument in or out

Use the desktop Linux’s man page for detailed documentation:

#man ioctl

RTC (Real Time Clock)

The device node is located at /dev/rtc. The 1A240/241 supports Linux standard simple RTC
control. You must include <linux/rtc.h>.

1. Function: RTC RD TIME
int ioctl(fd, RTC_RD TIME, struct rtc_time *time);
Description: read time information from RTC. It will return the value on argument 3.

2. Function: RTC SET TIME
int ioctl(fd, RTC_SET TIME, struct rtc_time *time);

Description: set RTC time. Argument 3 will be passed to RTC.

Buzzer

The device node is located at /dev/console. The 1A240/241 supports Linux standard buzzer control,
with The [A240/241’s buzzer running at a fixed frequency of 100 Hz. You must include
<sys/kd.h>.

Function: KDMKTONE

ioctl (fd, KDMKTONE, unsigned int arg);

6-2

1A240/241 Linux User’s Manual Programmer’s Guide

Description: The buzzer’s behavior is determined by the argument arg. The “high word” part
of arg gives the length of time the buzzer will sound, and the “low word” part gives the
frequency.

The buzzer’s on / off behavior is controlled by software. If you call the “ioct]l” function, you
MUST set the frequency at 100 Hz. If you use a different frequency, the system could crash.

WDT (Watch Dog Timer)

1.

Introduction

The WDT works like a watch dog function. You can enable it or disable it. When the user
enables WDT but the application does not acknowledge it, the system will reboot. You can set
the ack time from a minimum of 50 msec to a maximum of 60 seconds.

How the WDT works

The sWatchDog is disabled when the system boots up. The user application can also enable
ack. When the user does not ack, it will let the system reboot.

Kernel boot

User application running and enable user ack

The user API

The user application must include <moxadevic.h>, and link moxalib.a. A makefile
example is shown below:

all:
arm-linux-gcc —0 XXXX XxXxXxx.c -lmoxalib
int swtd open (void)

Description
Open the file handle to control the sWatchDog. If you want to do something you must first to
this. And keep the file handle to do other.

Input
None

Output
The return value is file handle. If has some error, it will return < 0 value.

You can get error from errno().

int swtd _enable(int fd, unsigned long time)

Description
Enable application sWatchDog. And you must do ack after this process.

Input
intfd - the file handle, from the swtd_open() return value.

unsigned long time - The time you wish to ack sWatchDog periodically. You must ack the
sWatchDog before timeout. If you do not ack, the system will be reboot automatically. The

6-3

1A240/241 Linux User’s Manual Programmer’s Guide

minimal time is 50 msec, the maximum time is 60 seconds. The time unit is msec.

Output
OK will be zero. The other has some error, to get the error code from errno().

int swtd disable (int £d)

Description
Disable the application to ack sWatchDog. And the kernel will be auto ack it. User does not to
do it at periodic.

Input
int fd - the file handle from swtd_open() return value.

Output
OK will be zero. The other has some error, to get error code from errno.

int swtd get(int fd, int *mode, unsigned long *time)

Description
Get current setting values.

mode —
1 for user application enable sWatchDog: need to do ack.
0 for user application disable sWatchdog: does not need to do ack.

time — The time period to ack sWatchDog.

Input :

int fd - the file handle from swtd_open() return value.

int *mode - the function will be return the status enable or disable user application need to
do ack.

unsigned long *time — the function will return the current time period.

Output:
OK will be zero.

The other has some error, to get error code from errno().

int swtd_ack(int £d)

Description
Acknowledge sWatchDog. When the user application enable sWatchDog. It need to call this
function periodically with user predefined time in the application program.

Input
int fd - the file handle from swtd_open() return value.

Output
OK will be zero.

The other has some error, to get error code from errno().

int swtd close(int £d)

Description
Close the file handle.

1A240/241 Linux User’s Manual Programmer’s Guide

Input
int fd - the file handle from swtd_open() return value.

Output
OK will be zero.

The other has some error, to get error code from errno().
Special Note

When you “kill the application with -9 or “kill without option” or “Ctrl+c” the kernel will
change to auto ack the sWatchDog.

When your application enables the sWatchDog and does not ack, your application may have a
logical error, or your application has made a core dump. The kernel will not change to auto
ack. This can cause a serious problem, causing your system to reboot again and again.

User application example

Example 1:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <moxadevice.h>

int main(int argc, char *argv[])
{
int £4d;

fd = swtd _open() ;
if (fd < 0) {
printf (“Open sWatchDog device fail !\n”);
exit (1),
}
swtd_enable (fd, 5000); // enable it and set it 5 seconds
while (1) {
// do user application want to do

swtd_ack (£d) ;

}
swtd_close (£fd) ;
exit(0) ;

}

The makefile is shown below:

all:
arm-linux-gcc -0 XXXX Xxxx.c —-lmoxalib

Example 2:

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <moxadevice.h>

6-5

1A240/241 Linux User’s Manual Programmer’s Guide

static void mydelay (unsigned long msec)
{

struct timeval time;

time.tv_sec = msec / 1000;

time.tv_usec = (msec % 1000) * 1000;

select(l, NULL, NULL, NULL, &time);
}

static int swtdfd;
static int stopflag=0;

static void stop_swatchdog()
{

stopflag = 1;
}

static void do_swatchdog(void)
{
swtd_enable (swtdfd, 500);
while (stopflag == 0) {
mydelay (250) ;
swtd_ack (swtdfd) ;

}
swtd_disable (swtdfd) ;
}

int main(int argc, char *argv[])
{
pid_t sonpid;

signal (SIGUSR1, stop_swatchdog) ;
swtdfd = swtd open();
if (swtdfd < 0) {
printf (“Open sWatchDog device fail !\n”);
exit (1),
}
if ((sonpid=fork()) == 0)
do_swatchdog() ;
// do user application main function

// end user application
kill (sonpid, SIGUSRI1) ;
swtd_close (swtdfd) ;
exit(1l);

The makefile is shown below:

all:
arm-linux-gcc —-o XXXxX Xxxx.c —-lmoxalib

6-6

1A240/241 Linux User’s Manual Programmer’s Guide

UART

The normal tty device node is located at /dev/ttyMO .. ttyM3.

The 1A240/241 supports Linux standard termios control. The Moxa UART Device API allows you
to configure ttyMO to ttyM3 as RS-232, RS-422, 4-wire RS-485, or 2-wire RS-485. 1A240/241
supports RS-232, RS-422, 2-wire RS-485, and 4-wire RS485.

You must include <moxadevice.h>.

#define RS232 MODE 0
#define RS485 2WIRE MODE 1
#define RS422 MODE 2
#define RS485_4WIRE MODE 3

1. Function: Moxa SET OP_MODE

int ioctl(fd, MOXA SET OP_MODE, &mode)

Description
Set the interface mode. Argument 3 mode will pass to the UART device driver and change it.

2. Function: MOXA GET OP MODE

int ioctl(fd, MOXA GET OP_MODE, &mode)

Description
Get the interface mode. Argument 3 mode will return the interface mode.

There are two Moxa private ioctl commands for setting up special baudrates.

Function: MOXA_SET SPECIAL BAUD RATE
Function: MOXA_GET_SPECIAL_BAUD RATE

If you use this ioctl to set a special baudrate, the termios cflag will be B4000000, in which case the
B4000000 define will be different. If the baudrate you get from termios (or from calling tcgetattr())
is B4000000, you must call ioctl with MOXA GET SPECIAL BAUD RATE to get the actual
baudrate.

Example to set the baudrate

#include <moxadevice.h>

#include <termios.h>

struct termios term;

int £d, speed;

fd = open(“/dev/ttyM0”, O_RDWR) ;
tcgetattr(fd, &term);

term.c_cflag &= ~(CBAUD | CBAUDEX) ;
term.c_cflag |= B4000000;

tcsetattr (fd, TCSANOW, &term);
speed = 500000;

ioctl(fd, MOXA SET SPECIAL BAUD RATE, &speed);

Example to get the baudrate

#include <moxadevice.h>

#include <termios.h>

struct termios term;

int £d, speed;

fd = open(“/dev/ttyM0”, O_RDWR) ;
tcgetattr(fd, &term);

if ((term.c_cflag & (CBAUD|CBAUDEX)) != B4000000) {
// follow the standard termios baud rate define
} else {

ioctl(fd, MOXA GET SPECIAL BAUD RATE, &speed);
}

6-7

1A240/241 Linux User’s Manual Programmer’s Guide

Baudrate inaccuracy

Divisor = 921600/Target Baud Rate. (Only Integer part)

ENUM = 8 *(921600/Target - Divisor) (Round up or down)

Inaccuracy = ((Target Baud Rate — 921600/(Divisor + (ENUM/8))) / Target Baud Rate)* 100%
E.g.,

To calculate 500000 bps

Divisor =1, ENUM =7,

Inaccuracy = 1.7%

*The Inaccuracy should less than 2% for work reliably.

Special Note

DI/DO

1. If the target baudrate is not a special baudrate (e.g. 50, 75, 110, 134, 150, 200, 300, 600, 1200,
1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600), the termios
cflag will be set to the same flag.

2. Ifyou use stty to get the serial information, you will get speed equal to 0.

int set_dout_state(int doport, int state)

Description
Set the digital output state to high or low.

Input
int doport - the digital output port number. It is 0 to 3.
int state - the output state, high or low. You can use define DIO_HIGH or DIO_LOW.

Output
OK will be zero.

int get din_state(int doport, int *state)

Description
Get the digital input current state at now.

Input
int diport - the digital input port number. It is 0 to 3.
int *state - To save the digital input state at now.

Output
OK will be zero.

int get dout state(int doport, int *state)

Description
Get the digital output current state at now.

Input
int doport - the digital output port number. It is O to 3.
int *state - To save the digital output state at now.

Output
OK will be zero.

6-8

1A240/241 Linux User’s Manual Programmer’s Guide

int set din_event(int diport, void (*func) (int diport), int mode, long int duration)

Description
Set the callback function for digital input port when the state is changed from high to low, low to
high or any sate changed.

Input

int diport - the digital output port number. It is 0 to 3.

void (*func)(int diport) - The call back function point. It will be called when the set event
happens.

int mode - Set the kind event. High to low, low to high or both.

long int duration - We know the digital signal sometime is not reliable. You can the duration time
to except the error signal. If you set to zero, it will not detect the duration time. You can set 40 ms
to 3600000 ms by increase 20 ms.

Output
OK will be zero.

Digital Inpart Signal
DIN_EVENT_HI3H_TO_LOW

(L

int get din_event(int diport, int *mode, long int *duration)

Description
Get the set event for digital input port.

Input

int diport - the digital output port number. It is O to 3.
int *mode - Save the set event.

long int *duration - Save the set duration time value.

Output
OK will be zero.

Special Note

Don’t forget to link the library libmoxalib & libpthread for DI/DO programming, and also
include the header file moxadevice.h. The DI/DO library only can be used by one program at a
time.

Example

1A240/241 Linux User’s Manual Programmer’s Guide

Example 1
File Name: tdio.c

Description: The program indicates to connect DO1 to DI1, change the digital output state to high
or low by manual input, then the detect and count the state changed events from DI1.(OK)

#include <stdio.h>
#include <stdlib.h>
#include <moxadevice.h>
#include <fcntl.h>

#ifdef DEBUG

#define dbg_printf(x...) printf (x)
#else

#define dbg_printf(x...)

#fendif

#define MIN DURATION 40

static char *DataString[2]={“Low “, “High “};
static void hightolowevent (int diport)

printf (“\nDIN port %d high to low.\n”, diport);
}

static void lowtohighevent (int diport)

{

printf (“\nDIN port %d low to high.\n”, diport);
}

int main(int argc, char * argv[])
{

int i, j, state, retval;
unsigned long duration;

while(1) {
printf (“\nSelect a number of menu, other key to exit.\n\

1. set high to low event \n\
2. get now data. \n\

3. set low to high event \n\
4. clear event \n\

5. set high data. \n\

6. set low data. \n\

7. quit \n\

8. show event and duration \n\
Choose : “);

retval =0;
scanf (“%d”, &i);
if (i ==1) { // set high to low event
printf (“Please keyin the DIN number : “);
scanf (“%d”, &i);
printf (“Please input the DIN duration, this minimun value must be over %d :
“,MIN_DURATION) ;
scanf (“%$1u”, &duration);
retval=set din event(i, hightolowevent, DIN EVENT HIGH TO LOW, duration);
} else if (i == 2) {// get now data
printf (“DIN data : “);
for (j=0; j<MAX DIN_PORT; j++) {
get din state(j, &state);
printf (“%s”, DataString[state]);
}
printf (“\n”) ;
printf (“DOUT data : “);
for (j=0; j<MAX DOUT_PORT; j++) {
get_dout_state(j, é&state);
printf (“%s”, DataString[state]);
}
printf (“\n”) ;

6-10

1A240/241 Linux User’s Manual Programmer’s Guide

} else if (i == 3) {// set low to high event
printf (“Please keyin the DIN number : “);
scanf (“%d”, &i);
printf (“Please input the DIN duration, this minimun value must be over %d :
“,MIN_DURATION) ;
scanf (“%$1u”, &duration);
retval = set din event(i, lowtohighevent, DIN EVENT LOW_TO HIGH, duration);
} else if (i == 4) {// clear event
printf (“Please keyin the DIN number : “);
scanf (“%d”, &i);
retval=set din event(i, NULL, DIN _EVENT CLEAR, O0);
} else if (i == 5) {// set high data
printf (“Please keyin the DOUT number : “);
scanf (“%$d”, &i);
retval=set dout state(i, 1);
} else if (i == 6) {// set low data
printf (“Please keyin the DOUT number : “);
scanf (“%$d”, &i);
retval=set dout state(i, 0);
} else if (i == 7) {// quit
break;
} else if (i == 8) {// show event and duration
printf (“Event:\n”) ;
for (j=0; j<MAX DOUT_PORT; j++) {
retval=get_din event(j, &i, &duration);
switch (1) {
case DIN_EVENT HIGH TO_LOW :
printf (“ (htl,%1lu)”, duration);
break;
case DIN_EVENT LOW_TO_ HIGH
printf (“(1th,%1lu)”, duration);
break;
case DIN EVENT CLEAR :
printf (“ (clr,%lu)”, duration);
break;
default
printf (Yerr “);
break;
}
}
printf (“\n”) ;
} else {
printf (“Select error, please select again !\n”);

}

switch(retval) {

case DIO_ERROR_PORT:

printf (“DIO error port\n”);
break;

case DIO_ERROR MODE:

printf (“DIO error mode\n”) ;
break;

case DIO_ERROR_CONTROL:

printf (*DIO error control\n”);
break;
case DIO_ERROR DURATION:

printf (“DIO error duratoin\n”);
case DIO_ERROR DURATION_ 20MS:
printf ("DIO error! The duratoin is not a multiple of 20 ms\n”);
break;

return 0;

Example 2

6-11

1A240/241 Linux User’s Manual Programmer’s Guide

File Name: tduration.c

Description: The program indicates to connect DO1 to DI1 and program will change digital output
state automatically at the fixed frequency, then detect event change of the digital input state is high
or low in different duration. (OK)

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/time.h>
#include <fcntl.h>
#include <unistd.h>
#include <pthread.h>
#include <moxadevice.h>

#ifdef DEBUG

#define dbg_printf (x...) printf (x)
#else

#define dbg printf(x...)

#fendif

#define DURATION NUM 7
#define TEST NUM 10

static int ndin_StateChangeDetected, ndout StateChangeDetected;

static int nDuration;

static unsigned long duration[2] [DURATION NUM]={ { 50, 40, 35, 30, 25, 20, 15}, { 160,
140, 120, 100, 80, 60, 40, } };

/**

When the din state changed form high to low, this function will be invoked
**/
static void low2highevent (int diport)

{

ndin_StateChangeDetected++;

dbg printf(“din state changed:%d\n”,ndin_StateChangeDetected) ;
}

/**
This function is used to exchange the dout state periodically

**/

void dout_control (int signo)

{

int state;

get _dout state(0, &state);
dbg_printf (“dout state changed:%d\n”,state) ;
if (state) // exchange the dout state periodically
{
ndout StateChangeDetected++;
set_dout state (0, 0);
}
else
{
set_dout state(0, 1);
}
}

void dio_test_function(void)
{

struct itimerval value;

int j, i, nChoice;

struct timeval tv;

do {

printf (“0.Test for Din duration==0.\n”");
printf (“1.Test for Din duration!=0.\n”");

6-12

1A240/241 Linux User’s Manual Programmer’s Guide

printf (*9.Quit.\n”);
printf (“Please select a choice>");
scanf (“%d”, &nChoice) ;

if(nChoice == 9){ // Quit
break;

elseif(nChoice == 0){ //test for din duration==

for (nDuration=0; nDuration < DURATION NUM; nDuration++) {
// configure the dout frequency. When the timer timeouts, dout_control() will be
called to change the dout state
value.it value.tv_sec = duration[0] [nDuration]/1000;
value.it_value.tv_usec = (duration[0] [nDuration]%1000) *1000
value.it_interval = value.it_value;
setitimer (ITIMER REAL, &value,NULL) ;

’

ndin_StateChangeDetected = 0; // reset these counters
ndout_StateChangeDetected = 0;

printf (“DI duration,:0, DO duration:%d\n”,duration[0] [nDuration]) ;
set_din_event (0, low2highevent, DIN_EVENT LOW TO HIGH, 0);

while(ndin_StateChangeDetected < TEST NUM) ({
pause() ;
}
printf (“ndin_StateChangeDetected:%d, ndout_stateChangeDetected:%d,\n”,
ndin_StateChangeDetected, ndout_StateChangeDetected) ;
printf (“loss detection
probability:%£\%,\n”, (ndout_StateChangeDetected-ndin StateChangeDetected)*100.0/nd
out_StateChangeDetected) ;
}
}//end of if(nChoice ==0)

elseif(nChoice == 1) { //test for din duration!=0

for (nDuration=0; nDuration < DURATION NUM; nDuration++) {
// configure the dout frequence. when the timer timeout, dout_control() will be
call to change the dout state
value.it_value.tv_sec = duration[1l] [nDuration]/1000;
value.it _value.tv_usec = (duration[l] [nDuration]%1000) *1000 ;
value.it_interval = value.it_value;
setitimer (ITIMER REAL, &value,NULL) ;

// Test for: dout kept in the same frequency but din set for different duration
for(i=0; i<DURATION_NUM; i++) {
if(duration[l][i] <= duration[1l] [nDuration]) {
// reset these counters
ndin_ StateChangeDetected = 0;
ndout_StateChangeDetected = 0;

printf (“DI duration,:%d, DO duration:%d\n”, duration[l][i],
duration[l] [nDuration]);

set_din_event (0, low2highevent, DIN_EVENT LOW_TO_HIGH, duration[1l][i]);

while (ndout_StateChangeDetected < TEST_NUM) {
pause() ;
}
printf (“ndin_StateChangeDetected:%d, ndout_StateChangeDetected:%d,\n",
ndin_StateChangeDetected, ndout StateChangeDetected) ;
printf (“loss detection
probability:%$£\%,\n”, (ndout_StateChangeDetected-ndin_StateChangeDetected) *100.0/nd
out_StateChangeDetected) ;
}
} //end of for(i=0; i<DURATION NUM; i++)
}

6-13

1A240/241 Linux User’s Manual Programmer’s Guide

}
} while(1);

pthread exit (NULL) ;
}

void init_sigaction(void)
{
struct sigaction act;
act.sa_handler=dout control;
act.sa_flags=0;
sigemptyset (&act.sa_mask) ;
sigaction (SIGALRM, &act,NULL) ;
}

int main(int argc, char * argv[])

{
pthread t dio_test;

init_sigaction();

set_dout_state(0, 0); // set the DOUTO as high

set_din_event (0, low2highevent, DIN_EVENT LOW TO_ HIGH, duration[1][0]);
dio_test_function() ;

while (nDuration < DURATION_NUM)
usleep (100000) ;

DIO Program Make File Example

FNAME=tdio
FNAMEl=tduration
CC=arm-linux-gcc
STRIP=arm-linux-strip

release:

$(CC) -o $(FNAME) $(FNAME).c -lmoxalib -lpthread
$(CC) -o $(FNAMEl) $(FNAME1l).c -lmoxalib -lpthread
$ (STRIP) -s $ (FNAME)

$ (STRIP) -s $(FNAME1)

debug:
$(CC) -DDEBUG -o $(FNAME)-dbg $ (FNAME) .cxx -lmoxalib -lpthread
$(CC) -DDEBUG -o $(FNAME1l)-dbg $ (FNAMEl) .cxx -lmoxalib -lpthread

clean:
/bin/rm -f $(FNAME) $ (FNAME)-dbg $ (FNAMEl) $(FNAMEl)-dbg *.o

Make File Example

The following Makefile file example codes are copied from the Hello example on the IA240/241°s
CD-ROM.

CC = /usr/local/arm-linux/bin/arm-linux-gcc
CPP = /usr/local/arm-linux/bin/arm-linux-gcc
SOURCES = hello.c

OBJS = §(SOURCES:.c=.0)

6-14

1A240/241 Linux User’s Manual Programmer’s Guide

all:hello

hello: $ (OBJS)
$(CC) -o $@ $* $(LDFLAGS) $(LIBS)

clean:
rm -f $(OBJS) hello core *.gdb

6-15

7

Software Lock

“Software Lock” is an innovative technology developed by the Moxa engineering force. It can be
adopted by a system integrator or developer to protect his applications from being copied. An
applicaion is compiled into a binary format bound to the embedded computer and the operating
system (OS) that the application runs on. As long as one obtains it from the computer, he/she can
install it into the same hardware and the same operating system. The add-on value created by the
developer is thus lost.

Moxa engineering force has developed this protection mechanism for your applications via data
encryption. The binary file associated with each of your applications needs to undergo an
additional encryption process after you have developed it. The process requires you to install an
encryption key in the target computer.

1. Choose an encryption key (e.g.,”ABigKey”) and install it in the target computer by a pre-
utility program, ‘setkey’.
#setkey ABigKey
Note: set an empty string to clear the encryption key in the target computer by:
#setkey “«
2. Develop and compile your program in the development PC.

3. Inthe development PC, run the utility program ‘binencryptor’ to encrypt your program with
an encryption key.

#binencryptor yourProgram ABigKey
4. Upload the encrypted program file to the target computerby FTP or NFS and test the program.

The encryption key is a computer-wise key. That is to say, a computer has only one key installed.
Running the program ‘setkey’ multiple times causes the key to be overrided.

To prove the effectiveness of this software protection mechanism, prepare a target computer that
has not been installed an encryption key or install a key different from that used to encrypt your
program. In any case, the encrypted program fails immediately.

This mechanism also allows the computer with an encryption key to bypass programs that are not
encrypted. Therefore, in the development phase, you can develop your programs and test them in
the target computer cleanly.

A

System Commands

Linux normal command utility collection

File manager

Editor

Network

SPXRASNNR WD =

N

cp

Is

In
mount
rm
chmod
chown
chgrp
sync
mv

. pwd

. df

. mkdir
. rmdir

vi
cat
zcat
grep
cut
find
more
test
sleep
echo

ping
route
netstat
ifconfig
tracerout
tftp
telnet

ftp

copy file
list file
make symbolic link file

mount and check file system

delete file

change file owner & group & user

change file owner
change file group

sync file system, let system file buffer be saved to hardware

move file

display now file directly
list now file system space
make new directory
delete directory

text editor

dump file context
compress or expand files
search string on file

get string on file

find file where are there
dump file by one page
test file exist or not

sleep (seconds)

echo string

ping to test network
routing table manager
display network status
set network ip address
trace route

1A240/241 Linux User’s Manual

System Commands

Process

Other

1. Kkill

2. ps

1. dmesg

2. sty

3. zcat

4. mknod
5. free

6. date

7. env

8. clear

9. reboot
10. halt

11. du

12. gzip, gunzip
13. hostname

Moxa special utilities

Eal ol

kversion

cat /etc/version

upramdisk
downramdisk

kill process
display now running process

dump kernel log message

to set serial port

dump .gz file context

make device node

display system memory usage

print or set the system date and time
run a program in a modified environment
clear the terminal screen

reboot / power off/on the server

halt the server

estimate file space usage

compress or expand files

show system’s host name

show kernel version

show user directory version
mount ramdisk

unmount ramdisk

A-2

